Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulating 2D topological quantum phase transitions on a digital quantum computer (2312.05079v3)

Published 8 Dec 2023 in quant-ph

Abstract: Efficient preparation of many-body ground states is key to harnessing the power of quantum computers in studying quantum many-body systems. In this work, we propose a simple method to design exact linear-depth parameterized quantum circuits which prepare a family of ground states across topological quantum phase transitions in 2D. We achieve this by constructing ground states represented by isometric tensor networks (isoTNS), which form a subclass of tensor network states that are efficiently preparable. By continuously tuning a parameter in the wavefunction, the many-body ground state undergoes quantum phase transitions, exhibiting distinct 2D quantum phases. We illustrate this by constructing an isoTNS path with bond dimension $D = 2$ interpolating between distinct symmetry-enriched topological (SET) phases. At the transition point, the wavefunction is related to a gapless point in the classical six-vertex model. Furthermore, the critical wavefunction supports a power-law correlation along one spatial direction while remaining long-range ordered in the other spatial direction. We provide an explicit parametrized local quantum circuit for the path and show that the 2D isoTNS can also be efficiently simulated by a holographic quantum algorithm requiring only an 1D array of qubits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982).
  2. R. Verresen, M. D. Lukin, and A. Vishwanath, Prediction of toric code topological order from Rydberg blockade, Phys. Rev. X 11, 031005 (2021).
  3. N. Tantivasadakarn, R. Verresen, and A. Vishwanath, Shortest route to non-abelian topological order on a quantum processor, Phys. Rev. Lett. 131, 060405 (2023a).
  4. W.-T. Xu and G.-M. Zhang, Tensor network state approach to quantum topological phase transitions and their criticalities of ℤ2subscriptℤ2{\mathbb{Z}}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topologically ordered states, Phys. Rev. B 98, 165115 (2018).
  5. G.-Y. Zhu and G.-M. Zhang, Gapless Coulomb state emerging from a self-dual topological tensor-network state, Phys. Rev. Lett. 122, 176401 (2019).
  6. W.-T. Xu, Q. Zhang, and G.-M. Zhang, Tensor network approach to phase transitions of a non-abelian topological phase, Phys. Rev. Lett. 124, 130603 (2020).
  7. W.-T. Xu and N. Schuch, Characterization of topological phase transitions from a non-abelian topological state and its Galois conjugate through condensation and confinement order parameters, Phys. Rev. B 104, 155119 (2021).
  8. W.-T. Xu, J. Garre-Rubio, and N. Schuch, Complete characterization of non-abelian topological phase transitions and detection of anyon splitting with projected entangled pair states, Phys. Rev. B 106, 205139 (2022).
  9. M. P. Zaletel and F. Pollmann, Isometric Tensor Network States in Two Dimensions, Phys. Rev. Lett. 124, 037201 (2020).
  10. Z.-Y. Wei, D. Malz, and J. I. Cirac, Sequential generation of projected entangled-pair states, Phys. Rev. Lett. 128, 010607 (2022).
  11. R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50, 1395 (1983).
  12. See the Supplemental Material.
  13. A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
  14. A. M. Essin and M. Hermele, Classifying fractionalization: Symmetry classification of gapped ℤ2subscriptℤ2{\mathbb{Z}}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT spin liquids in two dimensions, Phys. Rev. B 87, 104406 (2013).
  15. A. Mesaros and Y. Ran, Classification of symmetry enriched topological phases with exactly solvable models, Phys. Rev. B 87, 155115 (2013).
  16. N. Tarantino, N. H. Lindner, and L. Fidkowski, Symmetry fractionalization and twist defects, New Journal of Physics 18, 035006 (2016).
  17. Y.-M. Lu and A. Vishwanath, Classification and properties of symmetry-enriched topological phases: Chern-Simons approach with applications to Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT spin liquids, Phys. Rev. B 93, 155121 (2016).
  18. C.-Y. Huang, X. Chen, and F. Pollmann, Detection of symmetry-enriched topological phases, Phys. Rev. B 90, 045142 (2014).
  19. M. P. Zaletel, Detecting two-dimensional symmetry-protected topological order in a ground-state wave function, Phys. Rev. B 90, 235113 (2014).
  20. M. den Nijs and K. Rommelse, Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains, Phys. Rev. B 40, 4709 (1989).
  21. T. Kennedy and H. Tasaki, Hidden Z2subscriptZ2{\mathrm{Z}}_{2}roman_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT×Z2subscriptZ2{\mathrm{Z}}_{2}roman_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry breaking in haldane-gap antiferromagnets, Phys. Rev. B 45, 304 (1992).
  22. F. Pollmann and A. M. Turner, Detection of symmetry-protected topological phases in one dimension, Phys. Rev. B 86, 125441 (2012).
  23. R. J. Baxter, Exactly solved models in statistical mechanics (1982).
  24. N. Bogoliubov, XX0 Heisenberg chain and random walks, Journal of Mathematical Sciences 138, 5636 (2006).
  25. Z.-C. Gu, M. Levin, and X.-G. Wen, Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions, Phys. Rev. B 78, 205116 (2008).
  26. M. A. Levin and X.-G. Wen, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005).
  27. D. Haag, F. Baccari, and G. Styliaris, Typical correlation length of sequentially generated tensor network states, PRX Quantum 4, 030330 (2023).
Citations (4)

Summary

We haven't generated a summary for this paper yet.