Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Distributed ADMM-based Deep Learning Approach for Thermal Control in Multi-Zone Buildings under Demand Response Events (2312.05073v2)

Published 8 Dec 2023 in math.OC and cs.LG

Abstract: The increasing electricity use and reliance on intermittent renewable energy sources challenge power grid management during peak demand, making Demand Response programs and energy conservation measures essential. This research combines distributed optimization using ADMM with deep learning models to plan indoor temperature setpoints effectively. A two-layer hierarchical structure is used, with a central building coordinator at the upper layer and local controllers at the thermal zone layer. The coordinator must limit the building's maximum power by translating the building's total power to local power targets for each zone. Local controllers can modify the temperature setpoints to meet the local power targets. While most algorithms are either centralized or require prior knowledge about the building's structure, our approach is distributed and fully data-driven. The proposed algorithm, called Distributed Planning Networks, is designed to be both adaptable and scalable to many types of buildings, tackling two of the main challenges in the development of such systems. The proposed approach is tested on an 18-zone building modeled in EnergyPlus. The algorithm successfully manages Demand Response peak events.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. A. Levesque, R. C. Pietzcker, L. Baumstark, S. De Stercke, A. Grübler, and G. Luderer, “How much energy will buildings consume in 2100? a global perspective within a scenario framework,” Energy, vol. 148, pp. 514–527, 2018.
  2. H. Fontenot and B. Dong, “Modeling and control of building-integrated microgrids for optimal energy management – a review,” Applied Energy, vol. 254, p. 113689, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261919313765
  3. A. Ouammi, Y. Achour, D. Zejli, and H. Dagdougui, “Supervisory model predictive control for optimal energy management of networked smart greenhouses integrated microgrid,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 1, pp. 117–128, 2020.
  4. L. B. et al., “A review of performance of zero energy buildings and energy efficiency solutions,” Journal of Building Engineering, vol. 25, p. 100772, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S235271021831461X
  5. A. L. da Fonseca, K. M. Chvatal, and R. A. Fernandes, “Thermal comfort maintenance in demand response programs: A critical review,” Renewable and Sustainable Energy Reviews, vol. 141, p. 110847, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032121001416
  6. H. Zhang, F. Xiao, C. Zhang, and R. Li, “A multi-agent system based coordinated multi-objective optimal load scheduling strategy using marginal emission factors for building cluster demand response,” Energy and Buildings, vol. 281, p. 112765, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378778822009367
  7. J. Xie, A. Ajagekar, and F. You, “Multi-agent attention-based deep reinforcement learning for demand response in grid-responsive buildings,” Applied Energy, vol. 342, p. 121162, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261923005263
  8. R. D. Coninck, F. Magnusson, J. Åkesson, and L. Helsen, “Toolbox for development and validation of grey-box building models for forecasting and control,” Journal of Building Performance Simulation, vol. 9, no. 3, pp. 288–303, 2016. [Online]. Available: https://doi.org/10.1080/19401493.2015.1046933
  9. E. Rezaei and H. Dagdougui, “Optimal real-time energy management in apartment building integrating microgrid with multizone hvac control,” IEEE Transactions on Industrial Informatics, vol. 16, no. 11, pp. 6848–6856, 2020.
  10. M. Tanaskovic, D. Sturzenegger, R. Smith, and M. Morari, “Robust adaptive model predictive building climate control,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 1871–1876, 2017, 20th IFAC World Congress. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896317305700
  11. J. R. Vázquez-Canteli and Z. Nagy, “Reinforcement learning for demand response: A review of algorithms and modeling techniques,” Applied Energy, vol. 235, pp. 1072–1089, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261918317082
  12. Z. Zhang, A. Chong, Y. Pan, C. Zhang, and K. P. Lam, “Whole building energy model for hvac optimal control: A practical framework based on deep reinforcement learning,” Energy and Buildings, vol. 199, pp. 472–490, 2019.
  13. V. Taboga, A. Bellahsen, and H. Dagdougui, “An enhanced adaptivity of reinforcement learning-based temperature control in buildings using generalized training,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 6, no. 2, pp. 255–266, 2022.
  14. Y. Du, H. Zandi, O. Kotevska, K. Kurte, J. Munk, K. Amasyali, E. Mckee, and F. Li, “Intelligent multi-zone residential hvac control strategy based on deep reinforcement learning,” Applied Energy, vol. 281, p. 116117, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S030626192031535X
  15. D. Zhuang, V. J. Gan, Z. Duygu Tekler, A. Chong, S. Tian, and X. Shi, “Data-driven predictive control for smart hvac system in iot-integrated buildings with time-series forecasting and reinforcement learning,” Applied Energy, vol. 338, p. 120936, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261923003008
  16. Y. Yao and D. K. Shekhar, “State of the art review on model predictive control (mpc) in heating ventilation and air-conditioning (hvac) field,” Building and Environment, vol. 200, p. 107952, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360132321003565
  17. L. Yu, Y. Sun, Z. Xu, C. Shen, D. Yue, T. Jiang, and X. Guan, “Multi-agent deep reinforcement learning for hvac control in commercial buildings,” IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 407–419, 2021.
  18. J. Drgoňa, J. Arroyo, I. Cupeiro Figueroa, D. Blum, K. Arendt, D. Kim, E. P. Ollé, J. Oravec, M. Wetter, D. L. Vrabie, and L. Helsen, “All you need to know about model predictive control for buildings,” Annual Reviews in Control, vol. 50, pp. 190–232, 2020.
  19. S. S. Walker, W. Lombardi, S. Lesecq, and S. Roshany-Yamchi, “Application of distributed model predictive approaches to temperature and co2 concentration control in buildings,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 2589–2594, 2017, 20th IFAC World Congress. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896317301416
  20. X. Hou, Y. Xiao, J. Cai, J. Hu, and J. E. Braun, “Distributed model predictive control via Proximal Jacobian ADMM for building control applications,” Proceedings of the American Control Conference, pp. 37–43, 6 2017.
  21. Z. Wang, Y. Zhao, C. Zhang, P. Ma, and X. Liu, “A general multi agent-based distributed framework for optimal control of building hvac systems,” Journal of Building Engineering, vol. 52, p. 104498, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352710222005113
  22. M. Mork, A. Xhonneux, and D. Müller, “Nonlinear distributed model predictive control for multi-zone building energy systems,” Energy and Buildings, vol. 264, p. 112066, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378778822002377
  23. J. Drgoňa, A. R. Tuor, V. Chandan, and D. L. Vrabie, “Physics-constrained deep learning of multi-zone building thermal dynamics,” Energy and Buildings, vol. 243, p. 110992, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378778821002760
  24. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, p. 1–122, jan 2011.
  25. Q. Yang and H. Wang, “Distributed energy trading management for renewable prosumers with HVAC and energy storage,” Energy Reports, vol. 7, pp. 2512–2525, 11 2021.
  26. E. Rezaei, H. Dagdougui, and M. Rezaei, “Distributed stochastic model predictive control for peak load limiting in networked microgrids with building thermal dynamics,” IEEE Transactions on Smart Grid, vol. 13, no. 3, pp. 2038–2049, 2022.
  27. Y. Ma, G. Anderson, and F. Borrelli, “A distributed predictive control approach to building temperature regulation,” Proceedings of the American Control Conference, pp. 2089–2094, 2011.
  28. X. Zhang, W. Shi, B. Yan, A. Malkawi, and N. Li, “Decentralized and Distributed Temperature Control via HVAC Systems in Energy Efficient Buildings,” 2 2017. [Online]. Available: https://arxiv.org/abs/1702.03308v1
  29. M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems,” SIAM Journal on Optimization, vol. 26, no. 1, pp. 337–364, 2016.
  30. M. Hong, “A distributed, asynchronous, and incremental algorithm for nonconvex optimization: An ADMM approach,” IEEE Transactions on Control of Network Systems, vol. 5, no. 3, pp. 935–945, 9 2018.
  31. C. Lu, S. Li, and Z. Lu, “Building energy prediction using artificial neural networks: A literature survey,” Energy and Buildings, vol. 262, p. 111718, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378778821010021
  32. D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson, “Learning latent dynamics for planning from pixels,” in Proceedings of the 36th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.   PMLR, 09–15 Jun 2019, pp. 2555–2565.
  33. D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control: Learning behaviors by latent imagination,” 2020.
  34. IEA. (2022) Residential behaviour changes lead to a reduction in heating and cooling energy use by 2030. Paris. License: CC BY 4.0. [Online]. Available: https://www.iea.org/reports/residential-behaviour-changes-lead-to-a-reduction-in-heating-and-cooling-energy-use-by-2030
  35. C. Sunardi, Y. P. Hikmat, A. S. Margana, K. Sumeru, and M. F. B. Sukri, “Effect of room temperature set points on energy consumption in a residential air conditioning,” AIP Conference Proceedings, vol. 2248, no. 1, p. 070001, 2020. [Online]. Available: https://aip.scitation.org/doi/abs/10.1063/5.0018806
  36. M. Y. Lamoudi, M. Alamir, and P. Béguery, “Distributed constrained Model Predictive Control based on bundle method for building energy management,” Proceedings of the IEEE Conference on Decision and Control, pp. 8118–8124, 2011.
  37. F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu, “Neural networks with physics-informed architectures and constraints for dynamical systems modeling,” in Proceedings of The 4th Annual Learning for Dynamics and Control Conference, ser. Proceedings of Machine Learning Research, R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg, M. Schwager, and M. Kochenderfer, Eds., vol. 168.   PMLR, 23–24 Jun 2022, pp. 263–277.
  38. D. P. Bertsekas, “Chapter 1 - introduction,” in Constrained Optimization and Lagrange Multiplier Methods.   Academic Press, 1982, pp. 1–94.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets