Nonperturbative phase diagram of two-dimensional ${\cal N} = (2, 2)$ super-Yang--Mills (2312.04980v2)
Abstract: We consider two-dimensional ${\cal N} = (2, 2)$ Yang--Mills theory with gauge group SU($N$) in Euclidean signature compactified on a torus with thermal fermion boundary conditions imposed on one cycle. We perform non-perturbative lattice analyses of this theory for large $12 \leq N \leq 20$. Although no holographic dual of this theory is yet known, we conduct numerical investigations to check for features similar to the two-dimensional ${\cal N} = (8, 8)$ Yang--Mills theory, which has a well-defined gravity dual. We perform lattice field theory calculations to determine the phase diagram, observing a spatial deconfinement transition similar to the maximally supersymmetric case. However, the transition does not continue to low temperature, implying the absence of a topology-changing transition between black hole geometries in any holographic dual for this four-supercharge theory.
- J. M. Maldacena, “The Large-N𝑁Nitalic_N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, hep-th/9711200.
- N. Itzhaki, J. M. Maldacena, J. Sonnenschein, and S. Yankielowicz, “Supergravity and the large-N𝑁Nitalic_N limit of theories with sixteen supercharges,” Phys. Rev. D 58 (1998) 046004, hep-th/9802042.
- S. Catterall, D. B. Kaplan, and M. Unsal, “Exact lattice supersymmetry,” Phys. Rept. 484 (2009) 71–130, arXiv:0903.4881.
- D. Schaich, “Lattice studies of supersymmetric gauge theories,” Eur. Phys. J. ST 232 (2023) 305–320, arXiv:2208.03580.
- S. Catterall, A. Joseph, and T. Wiseman, “Thermal phases of D1-branes on a circle from lattice super-Yang–Mills,” JHEP 1012 (2010) 022, arXiv:1008.4964.
- S. Catterall, R. G. Jha, D. Schaich, and T. Wiseman, “Testing holography using lattice super-Yang–Mills theory on a 2-torus,” Phys. Rev. D 97 (2018) 086020, arXiv:1709.07025.
- M. Hanada and I. Kanamori, “Lattice study of two-dimensional 𝒩=(2,2)𝒩22\mathcal{N}=(2,2)caligraphic_N = ( 2 , 2 ) super-Yang–Mills at large N𝑁Nitalic_N,” Phys. Rev. D 80 (2009) 065014, arXiv:0907.4966.
- M. Hanada and I. Kanamori, “Absence of sign problem in two-dimensional 𝒩=(2,2)𝒩22\mathcal{N}=(2,2)caligraphic_N = ( 2 , 2 ) super-Yang–Mills on lattice,” JHEP 1101 (2011) 058, arXiv:1010.2948.
- S. Catterall, R. Galvez, A. Joseph, and D. Mehta, “On the sign problem in 2D lattice super-Yang–Mills,” JHEP 1201 (2012) 108, arXiv:1112.3588.
- S. Catterall, R. G. Jha, and A. Joseph, “Nonperturbative study of dynamical SUSY breaking in 𝒩=(2,2)𝒩22\mathcal{N}=(2,2)caligraphic_N = ( 2 , 2 ) Yang–Mills theory,” Phys. Rev. D 97 (2018) 054504, arXiv:1801.00012.
- D. August, M. Steinhauser, B. H. Wellegehausen, and A. Wipf, “Mass spectrum of 2-dimensional 𝒩=(2,2)𝒩22\mathcal{N}=(2,2)caligraphic_N = ( 2 , 2 ) super-Yang–Mills theory on the lattice,” JHEP 1901 (2019) 099, arXiv:1802.07797.
- N. S. Dhindsa, R. G. Jha, A. Joseph, and D. Schaich, “Large-N𝑁Nitalic_N limit of two-dimensional Yang–Mills theory with four supercharges,” Proc. Sci. LATTICE2021 (2022) 433, arXiv:2109.01001.
- N. S. Dhindsa, R. G. Jha, A. Joseph, and D. Schaich, “Phase diagram of two-dimensional SU(N𝑁Nitalic_N) super-Yang–Mills theory with four supercharges — data release,” 2023. doi:10.5281/zenodo.10083864.
- P. H. Damgaard and S. Matsuura, “Geometry of Orbifolded Supersymmetric Lattice Gauge Theories,” Phys. Lett. B 661 (2008) 52–56, arXiv:0801.2936.
- G. Bergner, S. Catterall, C. Culver, N. S. Dhindsa, J. Giedt, R. G. Jha, A. Joseph, D. Schaich, and A. Sherletov, “SUSY LATTICE 2.3 — Codes for supersymmetric lattice gauge theories,” 2021. github.com/daschaich/susy.
- D. Schaich and T. DeGrand, “Parallel software for lattice 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric Yang–Mills theory,” Comput. Phys. Commun. 190 (2015) 200–212, arXiv:1410.6971.
- R. Gregory and R. Laflamme, “Black strings and p-branes are unstable,” Phys. Rev. Lett. 70 (1993) 2837–2840, hep-th/9301052.
- O. Aharony, J. Marsano, S. Minwalla, and T. Wiseman, “Black hole-black string phase transitions in thermal (1+1)-dimensional supersymmetric Yang–Mills theory on a circle,” Class. Quant. Grav. 21 (2004) 5169–5192, hep-th/0406210.
- E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2 (1998) 505–532, hep-th/9803131.
- T. Azuma, T. Morita, and S. Takeuchi, “Hagedorn Instability in Dimensionally Reduced Large-N𝑁Nitalic_N Gauge Theories as Gregory–Laflamme and Rayleigh-Plateau Instabilities,” Phys. Rev. Lett. 113 (2014) 091603, arXiv:1403.7764.
- O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, M. Van Raamsdonk, and T. Wiseman, “The phase structure of low-dimensional large-N𝑁Nitalic_N gauge theories on tori,” JHEP 0601 (2006) 140, hep-th/0508077.