Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential privacy statistical inference for a directed graph network model with covariates (2312.04903v1)

Published 8 Dec 2023 in math.ST and stat.TH

Abstract: The real network has two characteristics: heterogeneity and homogeneity. A directed network model with covariates is proposed to analyze these two features, and the asymptotic theory of parameter Maximum likelihood estimators(MLEs) is established. However, in many practical cases, network data often carries a lot of sensitive information. How to achieve the trade-off between privacy and utility has become an important issue in network data analysis. In this paper, we study a directed $\beta$-model with covariates under differential privacy mechanism. It includes $2n$-dimensional node degree parameters $\boldsymbol{\theta}$ and a $p$-dimensional homogeneity parameter $\boldsymbol{\gamma}$ that describes the covariate effect. We use the discrete Laplace mechanism to release noise for the bi-degree sequences. Based on moment equations, we estimate the parameters of both degree heterogeneity and homogeneity in the model, and derive the consistency and asymptotic normality of the differentially private estimators as the number of nodes tends to infinity. Numerical simulations and case studies are provided to demonstrate the validity of our theoretical results.

Summary

We haven't generated a summary for this paper yet.