Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Context-Stable and Visual-Consistent Image Inpainting (2312.04831v2)

Published 8 Dec 2023 in cs.CV

Abstract: Recent progress in inpainting increasingly relies on generative models, leveraging their strong generation capabilities for addressing large irregular masks. However, this enhanced generation often introduces context-instability, leading to arbitrary object generation within masked regions. This paper proposes a balanced solution, emphasizing the importance of unmasked regions in guiding inpainting while preserving generation capacity. Our approach, Aligned Stable Inpainting with UnKnown Areas Prior (ASUKA), employs a Masked Auto-Encoder (MAE) to produce reconstruction-based prior. Aligned with the powerful Stable Diffusion inpainting model (SD), ASUKA significantly improves context stability. ASUKA further adopts an inpainting-specialized decoder, highly reducing the color inconsistency issue of SD and thus ensuring more visual-consistent inpainting. We validate effectiveness of inpainting algorithms on benchmark dataset Places 2 and a collection of several existing datasets, dubbed MISATO, across diverse domains and masking scenarios. Results on these benchmark datasets confirm ASUKA's efficacy in both context-stability and visual-consistency compared to SD and other inpainting algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yikai Wang (78 papers)
  2. Chenjie Cao (28 papers)
  3. Ke Fan Xiangyang Xue Yanwei Fu (1 paper)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com