Anomalies of 4d $Spin_G$ Theories (2312.04756v3)
Abstract: We consider 't Hooft anomalies of four-dimensional gauge theories whose fermion matter content admits $Spin_G(4)$ generalized spin structure, with $G$ either gauged or a global symmetry. We discuss methods to directly compute $w_2\cup w_3$ 't Hooft anomalies involving Stiefel-Whitney classes of gauge and flavor symmetry bundles that such theories can have on non-spin manifolds, e.g. $M_4=\mathbb{CP}2$. Such anomalies have been discussed for $SU(2)$ gauge theory with adjoint fermions, where they were shown to give an effect that was originally found in the Donaldson-Witten topological twist of ${\cal N}=2$ SYM theory. We directly compute these anomalies for a variety of theories, including general $G$ gauge theories with adjoint fermions, $SU(2)$ gauge theory with fermions in general representations, and $Spin(N)$ gauge theories with fundamental matter. We discuss aspects of matching these and other 't Hooft anomalies in the IR phase where global symmetries are spontaneously broken, in particular for general $G_{\rm gauge}$ theory with $N_f$ adjoint Weyl fermions. For example, in the case of $N_f=2$ we discuss anomaly matching in the IR phase consisting of $h\vee {G{\rm gauge}}$ copies of a $\mathbb{CP}1$ non-linear sigma model, including for the $w_2w_3$ anomalies when formulated with $Spin_{SU(2)_{\rm global}}(4)$ structure.
- J. McGreevy, “Generalized Symmetries in Condensed Matter,” arXiv:2204.03045 [cond-mat.str-el].
- C. Cordova, T. T. Dumitrescu, K. Intriligator, and S.-H. Shao, “Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond,” in Snowmass 2021. 5, 2022. arXiv:2205.09545 [hep-th].
- S. Schafer-Nameki, “ICTP Lectures on (Non-)Invertible Generalized Symmetries,” arXiv:2305.18296 [hep-th].
- T. D. Brennan and S. Hong, “Introduction to Generalized Global Symmetries in QFT and Particle Physics,” arXiv:2306.00912 [hep-ph].
- L. Bhardwaj, L. E. Bottini, L. Fraser-Taliente, L. Gladden, D. S. W. Gould, A. Platschorre, and H. Tillim, “Lectures on Generalized Symmetries,” arXiv:2307.07547 [hep-th].
- S.-H. Shao, “What’s Done Cannot Be Undone: TASI Lectures on Non-Invertible Symmetry,” arXiv:2308.00747 [hep-th].
- I. n. García-Etxebarria, H. Hayashi, K. Ohmori, Y. Tachikawa, and K. Yonekura, “8d gauge anomalies and the topological Green-Schwarz mechanism,” JHEP 11 (2017) 177, arXiv:1710.04218 [hep-th].
- C. Córdova and K. Ohmori, “Anomaly Obstructions to Symmetry Preserving Gapped Phases,” arXiv:1910.04962 [hep-th].
- C. Córdova and K. Ohmori, “Anomaly Constraints on Gapped Phases with Discrete Chiral Symmetry,” Phys. Rev. D 102 no. 2, (2020) 025011, arXiv:1912.13069 [hep-th].
- T. D. Brennan, “Anomaly Enforced Gaplessness and Symmetry Fractionalization for SpinG𝑆𝑝𝑖subscript𝑛𝐺Spin_{G}italic_S italic_p italic_i italic_n start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT Symmetries,” arXiv:2308.12999 [hep-th].
- T. D. Brennan and A. Sheckler, “Anomaly Enforced Gaplessness for Background Flux Anomalies and Symmetry Fractionalization,” arXiv:2311.00093 [hep-th].
- E. Witten, “Global Aspects of Current Algebra,” Nucl. Phys. B 223 (1983) 422–432.
- L. Alvarez-Gaume and E. Witten, “Gravitational Anomalies,” Nucl. Phys. B 234 (1984) 269.
- L. Alvarez-Gaume and P. H. Ginsparg, “The Structure of Gauge and Gravitational Anomalies,” Annals Phys. 161 (1985) 423. [Erratum: Annals Phys. 171, 233 (1986)].
- C. G. Callan, Jr. and J. A. Harvey, “Anomalies and Fermion Zero Modes on Strings and Domain Walls,” Nucl. Phys. B 250 (1985) 427–436.
- D. S. Freed and M. J. Hopkins, “Reflection positivity and invertible topological phases,” Geom. Topol. 25 (2021) 1165–1330, arXiv:1604.06527 [hep-th].
- E. Witten, “GLOBAL GRAVITATIONAL ANOMALIES,” Commun. Math. Phys. 100 (1985) 197.
- X.-z. Dai and D. S. Freed, “eta invariants and determinant lines,” J. Math. Phys. 35 (1994) 5155–5194, arXiv:hep-th/9405012. [Erratum: J.Math.Phys. 42, 2343–2344 (2001)].
- E. Witten and K. Yonekura, “Anomaly Inflow and the η𝜂\etaitalic_η-Invariant,” in The Shoucheng Zhang Memorial Workshop. 9, 2019. arXiv:1909.08775 [hep-th].
- A. Kapustin, “Symmetry Protected Topological Phases, Anomalies, and Cobordisms: Beyond Group Cohomology,” arXiv:1403.1467 [cond-mat.str-el].
- D. S. Freed, “Short-range entanglement and invertible field theories,” arXiv:1406.7278 [cond-mat.str-el].
- R. Thorngren, “Framed Wilson Operators, Fermionic Strings, and Gravitational Anomaly in 4d,” JHEP 02 (2015) 152, arXiv:1404.4385 [hep-th].
- C. Córdova and T. T. Dumitrescu, “Candidate Phases for SU(2) Adjoint QCD44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT with Two Flavors from 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 Supersymmetric Yang-Mills Theory,” arXiv:1806.09592 [hep-th].
- J. Wang, X.-G. Wen, and E. Witten, “A New SU(2) Anomaly,” J. Math. Phys. 60 no. 5, (2019) 052301, arXiv:1810.00844 [hep-th].
- Z. Wan and J. Wang, “Adjoint QCD44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT, Deconfined Critical Phenomena, Symmetry-Enriched Topological Quantum Field Theory, and Higher Symmetry-Extension,” Phys. Rev. D 99 no. 6, (2019) 065013, arXiv:1812.11955 [hep-th].
- Y. Lee, K. Ohmori, and Y. Tachikawa, “Revisiting Wess-Zumino-Witten terms,” SciPost Phys. 10 no. 3, (2021) 061, arXiv:2009.00033 [hep-th].
- S. M. Kravec, J. McGreevy, and B. Swingle, “All-fermion electrodynamics and fermion number anomaly inflow,” Phys. Rev. D 92 no. 8, (2015) 085024, arXiv:1409.8339 [hep-th].
- E. Witten, “An SU(2) Anomaly,” Phys. Lett. B 117 (1982) 324–328.
- K. A. Intriligator, N. Seiberg, and S. H. Shenker, “Proposal for a simple model of dynamical SUSY breaking,” Phys. Lett. B 342 (1995) 152–154, arXiv:hep-ph/9410203.
- T. D. Brennan, C. Cordova, and T. T. Dumitrescu, “Line Defect Quantum Numbers & Anomalies,” arXiv:2206.15401 [hep-th].
- M. M. Anber and E. Poppitz, “Generalized ’t Hooft anomalies on non-spin manifolds,” JHEP 04 (2020) 097, arXiv:2002.02037 [hep-th].
- M. M. Anber and E. Poppitz, “On the baryon-color-flavor (BCF) anomaly in vector-like theories,” JHEP 11 (2019) 063, arXiv:1909.09027 [hep-th].
- S. K. Donaldson, “An application of gauge theory to four-dimensional topology,” J. Diff. Geom. 18 no. 2, (1983) 279–315.
- S. K. Donaldson, “Polynomial invariants for smooth manifolds,” Topology 29 (1990) 257–315.
- E. Witten, “Supersymmetric Yang-Mills theory on a four manifold,” J. Math. Phys. 35 (1994) 5101–5135, arXiv:hep-th/9403195.
- E. Witten, “Monopoles and four manifolds,” Math. Res. Lett. 1 (1994) 769–796, arXiv:hep-th/9411102.
- G. W. Moore and E. Witten, “Integration over the u plane in Donaldson theory,” Adv. Theor. Math. Phys. 1 (1997) 298–387, arXiv:hep-th/9709193.
- E. Witten, “On S duality in Abelian gauge theory,” Selecta Math. 1 (1995) 383, arXiv:hep-th/9505186.
- S. S. Razamat and D. Tong, “Gapped Chiral Fermions,” Phys. Rev. X 11 no. 1, (2021) 011063, arXiv:2009.05037 [hep-th].
- D. Tong, “Comments on symmetric mass generation in 2d and 4d,” JHEP 07 (2022) 001, arXiv:2104.03997 [hep-th].
- P. B. Smith, A. Karasik, N. Lohitsiri, and D. Tong, “On discrete anomalies in chiral gauge theories,” JHEP 01 (2022) 112, arXiv:2106.06402 [hep-th].
- C. Cordova and K. Ohmori, “Noninvertible Chiral Symmetry and Exponential Hierarchies,” Phys. Rev. X 13 no. 1, (2023) 011034, arXiv:2205.06243 [hep-th].
- Y. Choi, H. T. Lam, and S.-H. Shao, “Noninvertible Global Symmetries in the Standard Model,” Phys. Rev. Lett. 129 no. 16, (2022) 161601, arXiv:2205.05086 [hep-th].
- C.-T. Hsieh, “Discrete gauge anomalies revisited,” arXiv:1808.02881 [hep-th].
- D. Delmastro, J. Gomis, P.-S. Hsin, and Z. Komargodski, “Anomalies and Symmetry Fractionalization,” arXiv:2206.15118 [hep-th].
- Y. Sato, Y. Tachikawa, and T. Watari, “On odd number of fermion zero modes on solitons in quantum field theory and string/M theory,” JHEP 09 (2022) 043, arXiv:2205.13185 [hep-th].
- K. A. Intriligator and N. Seiberg, “Duality, monopoles, dyons, confinement and oblique confinement in supersymmetric SO(N(c)) gauge theories,” Nucl. Phys. B 444 (1995) 125–160, arXiv:hep-th/9503179.
- C. Csaki and H. Murayama, “Instantons in partially broken gauge groups,” Nucl. Phys. B 532 (1998) 498–526, arXiv:hep-th/9804061.
- E. Witten, “Topological Quantum Field Theory,” Commun. Math. Phys. 117 (1988) 353.
- A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and Duality,” JHEP 04 (2014) 001, arXiv:1401.0740 [hep-th].
- Y. Lee, K. Ohmori, and Y. Tachikawa, “Matching higher symmetries across Intriligator-Seiberg duality,” JHEP 10 (2021) 114, arXiv:2108.05369 [hep-th].
- J. Kaidi, K. Ohmori, and Y. Zheng, “Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories,” Phys. Rev. Lett. 128 no. 11, 111601, arXiv:2111.01141 [hep-th].
- J. Kaidi, E. Nardoni, G. Zafrir, and Y. Zheng, “Symmetry TFTs and Anomalies of Non-Invertible Symmetries,” arXiv:2301.07112 [hep-th].
- I. Bah, E. Leung, and T. Waddleton, “Non-Invertible Symmetries, Brane Dynamics, and Tachyon Condensation,” arXiv:2306.15783 [hep-th].
- F. Apruzzi, I. Bah, F. Bonetti, and S. Schafer-Nameki, “Noninvertible Symmetries from Holography and Branes,” Phys. Rev. Lett. 130 no. 12, (2023) 121601, arXiv:2208.07373 [hep-th].
- Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions,” Commun. Math. Phys. 402 no. 1, (2023) 489–542, arXiv:2204.09025 [hep-th].
- Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Noninvertible duality defects in 3+1 dimensions,” Phys. Rev. D 105 no. 12, (2022) 125016, arXiv:2111.01139 [hep-th].
- Y. Tachikawa, “On gauging finite subgroups,” SciPost Phys. 8 no. 1, (2020) 015, arXiv:1712.09542 [hep-th].
- F. Benini, C. Córdova, and P.-S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019) 118, arXiv:1803.09336 [hep-th].
- P.-S. Hsin and H. T. Lam, “Discrete theta angles, symmetries and anomalies,” SciPost Phys. 10 no. 2, (2021) 032, arXiv:2007.05915 [hep-th].
- A. Kapustin, “Bosonic Topological Insulators and Paramagnets: a view from cobordisms,” arXiv:1404.6659 [cond-mat.str-el].
- A. Hatcher, Algebraic Topology. Cambridge University Press, Cambridge, 2001.
- K. A. Intriligator and N. Seiberg, “Lectures on supersymmetric gauge theories and electric-magnetic duality,” Nucl. Phys. B Proc. Suppl. 45BC (1996) 1–28, arXiv:hep-th/9509066.
- C. Vafa and E. Witten, “Restrictions on Symmetry Breaking in Vector-Like Gauge Theories,” Nucl. Phys. B 234 (1984) 173–188.
- J. Wess and B. Zumino, “Consequences of anomalous Ward identities,” Phys. Lett. B 37 (1971) 95–97.
- D. S. Freed, “Pions and Generalized Cohomology,” J. Diff. Geom. 80 no. 1, (2008) 45–77, arXiv:hep-th/0607134.
- D. S. Freed, Z. Komargodski, and N. Seiberg, “The Sum Over Topological Sectors and θ𝜃\thetaitalic_θ in the 2+1-Dimensional ℂℙ1ℂsuperscriptℙ1\mathbb{C}\mathbb{P}^{1}blackboard_C blackboard_P start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT σ𝜎\sigmaitalic_σ-Model,” Commun. Math. Phys. 362 no. 1, (2018) 167–183, arXiv:1707.05448 [cond-mat.str-el].
- D.-C. Lu, “Nonlinear sigma model description of deconfined quantum criticality in arbitrary dimensions,” SciPost Phys. Core 6 (2023) 047, arXiv:2209.00670 [cond-mat.str-el].
- S. Chen and Y. Tanizaki, “Solitonic symmetry beyond homotopy: invertibility from bordism and non-invertibility from TQFT,” arXiv:2210.13780 [hep-th].
- P.-S. Hsin, “Non-Invertible Defects in Nonlinear Sigma Models and Coupling to Topological Orders,” arXiv:2212.08608 [cond-mat.str-el].
- S. Chen and Y. Tanizaki, “Solitonic symmetry as non-invertible symmetry: cohomology theories with TQFT coefficients,” arXiv:2307.00939 [hep-th].
- S. D. Pace, “Emergent generalized symmetries in ordered phases,” arXiv:2308.05730 [cond-mat.str-el].
- S. D. Pace, C. Zhu, A. Beaudry, and X.-G. Wen, “Generalized symmetries in singularity-free nonlinear σ𝜎\sigmaitalic_σ-models and their disordered phases,” arXiv:2310.08554 [cond-mat.str-el].
- D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
- D. Delmastro and J. Gomis, “Domain walls in 4d𝒩𝒩\mathcal{N}caligraphic_N = 1 SYM,” JHEP 03 (2021) 259, arXiv:2004.11395 [hep-th].
- S. Bolognesi and M. Shifman, “The Hopf Skyrmion in QCD with Adjoint Quarks,” Phys. Rev. D 75 (2007) 065020, arXiv:hep-th/0701065.
- L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago, “Conformal versus confining scenario in SU(2) with adjoint fermions,” Phys. Rev. D 80 (2009) 074507, arXiv:0907.3896 [hep-lat].
- T. DeGrand, Y. Shamir, and B. Svetitsky, “Infrared fixed point in SU(2) gauge theory with adjoint fermions,” Phys. Rev. D 83 (2011) 074507, arXiv:1102.2843 [hep-lat].
- T. DeGrand, Y. Shamir, and B. Svetitsky, “Near the Sill of the Conformal Window: Gauge Theories with Fermions in Two-Index Representations,” Phys. Rev. D 88 no. 5, (2013) 054505, arXiv:1307.2425 [hep-lat].
- M. Shifman, “Remarks on Adjoint QCD with k𝑘kitalic_k Flavors, k≥2𝑘2k\geq 2italic_k ≥ 2,” Mod. Phys. Lett. A 28 (2013) 1350179, arXiv:1307.5826 [hep-th].
- G. Basar, A. Cherman, D. Dorigoni, and M. Ünsal, “Volume Independence in the Large N𝑁Nitalic_N Limit and an Emergent Fermionic Symmetry,” Phys. Rev. Lett. 111 no. 12, (2013) 121601, arXiv:1306.2960 [hep-th].
- A. Athenodorou, E. Bennett, G. Bergner, and B. Lucini, “Infrared regime of SU(2) with one adjoint Dirac flavor,” Phys. Rev. D 91 no. 11, (2015) 114508, arXiv:1412.5994 [hep-lat].
- M. M. Anber and E. Poppitz, “Domain walls in high-T SU(N) super Yang-Mills theory and QCD(adj),” JHEP 05 (2019) 151, arXiv:1811.10642 [hep-th].
- M. M. Anber and E. Poppitz, “Two-flavor adjoint QCD,” Phys. Rev. D 98 no. 3, (2018) 034026, arXiv:1805.12290 [hep-th].
- Z. Bi and T. Senthil, “Adventure in Topological Phase Transitions in 3+1 -D: Non-Abelian Deconfined Quantum Criticalities and a Possible Duality,” Phys. Rev. X 9 no. 2, (2019) 021034, arXiv:1808.07465 [cond-mat.str-el].
- E. Poppitz and T. A. Ryttov, “Possible new phase for adjoint QCD,” Phys. Rev. D 100 no. 9, (2019) 091901, arXiv:1904.11640 [hep-th].
- O. Aharony, N. Seiberg, and Y. Tachikawa, “Reading between the lines of four-dimensional gauge theories,” JHEP 08 (2013) 115, arXiv:1305.0318 [hep-th].
- C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, “Anomalies in the Space of Coupling Constants and Their Dynamical Applications II,” SciPost Phys. 8 no. 1, (2020) 002, arXiv:1905.13361 [hep-th].
- M. Guo, K. Ohmori, P. Putrov, Z. Wan, and J. Wang, “Fermionic Finite-Group Gauge Theories and Interacting Symmetric/Crystalline Orders via Cobordisms,” Commun. Math. Phys. 376 no. 2, (2020) 1073–1154, arXiv:1812.11959 [hep-th].
- A. A. Cox, E. Poppitz, and F. D. Wandler, “The mixed 0-form/1-form anomaly in Hilbert space: pouring the new wine into old bottles,” JHEP 10 (2021) 069, arXiv:2106.11442 [hep-th].
- E. Witten, “Current Algebra, Baryons, and Quark Confinement,” Nucl. Phys. B 223 (1983) 433–444.
- K. M. Benson, A. V. Manohar, and M. Saadi, “QCD flux tubes as sigma model relics,” Phys. Rev. Lett. 74 (1995) 1932–1935, arXiv:hep-th/9409042.
- K. M. Benson and M. Saadi, “QCD flux tubes in a current algebra approach,” Phys. Rev. D 51 (1995) 3096–3107, arXiv:hep-th/9409109.
- R. Auzzi and M. Shifman, “Low-Energy Limit of Yang-Mills with Massless Adjoint Quarks: Chiral Lagrangian and Skyrmions,” J. Phys. A 40 (2007) 6221–6238, arXiv:hep-th/0612211.
- S. Bolognesi, “Skyrmions in Orientifold and Adjoint QCD,” arXiv:0901.3796 [hep-th].
- Z.-C. Gu and X.-G. Wen, “Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ𝜎\sigmaitalic_σ models and a special group supercohomology theory,” Phys. Rev. B 90 no. 11, (2014) 115141, arXiv:1201.2648 [cond-mat.str-el].
- C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, “Anomalies in the Space of Coupling Constants and Their Dynamical Applications I,” SciPost Phys. 8 no. 1, (2020) 001, arXiv:1905.09315 [hep-th].
- K. Yonekura, “General anomaly matching by Goldstone bosons,” JHEP 03 (2021) 057, arXiv:2009.04692 [hep-th].
- M. Dierigl and A. Pritzel, “Topological Model for Domain Walls in (Super-)Yang-Mills Theories,” Phys. Rev. D 90 no. 10, (2014) 105008, arXiv:1405.4291 [hep-th].
- R. Auzzi, S. Bolognesi, and M. Shifman, “Skyrmions in Yang-Mills Theories with Massless Adjoint Quarks,” Phys. Rev. D 77 (2008) 125029, arXiv:0804.0229 [hep-th].
- N. Seiberg and E. Witten, “Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory,” Nucl. Phys. B 426 (1994) 19–52, arXiv:hep-th/9407087. [Erratum: Nucl.Phys.B 430, 485–486 (1994)].
- E. D’Hoker, T. T. Dumitrescu, E. Gerchkovitz, and E. Nardoni, “Revisiting the multi-monopole point of SU(N) 𝒩𝒩\mathcal{N}caligraphic_N = 2 gauge theory in four dimensions,” JHEP 09 (2021) 003, arXiv:2012.11843 [hep-th].
- E. D’Hoker, T. T. Dumitrescu, and E. Nardoni, “Exploring the strong-coupling region of SU(N) Seiberg-Witten theory,” JHEP 11 (2022) 102, arXiv:2208.11502 [hep-th].
- L. D. Faddeev and A. J. Niemi, “Knots and particles,” Nature 387 (1997) 58, arXiv:hep-th/9610193.
- F. Wilczek and A. Zee, “Linking Numbers, Spin, and Statistics of Solitons,” Phys. Rev. Lett. 51 (1983) 2250–2252.
- S. Krusch and J. M. Speight, “Fermionic quantization of Hopf solitons,” Commun. Math. Phys. 264 (2006) 391–410, arXiv:hep-th/0503067.
- D. Finkelstein and J. Rubinstein, “Connection between spin, statistics, and kinks,” J. Math. Phys. 9 (1968) 1762–1779.
- L. Fidkowski and A. Kitaev, “The effects of interactions on the topological classification of free fermion systems,” Phys. Rev. B 81 (2010) 134509, arXiv:0904.2197 [cond-mat.str-el].
- L. Fidkowski and A. Kitaev, “Topological phases of fermions in one dimension,” Phys. Rev. B 83 (2011) 75103–75116.
- M. Zeng, Z. Zhu, J. Wang, and Y.-Z. You, “Symmetric Mass Generation in the 1+1 Dimensional Chiral Fermion 3-4-5-0 Model,” Phys. Rev. Lett. 128 no. 18, (2022) 185301, arXiv:2202.12355 [cond-mat.str-el].
- Y.-Z. You, Y.-C. He, C. Xu, and A. Vishwanath, “Symmetric Fermion Mass Generation as Deconfined Quantum Criticality,” Phys. Rev. X 8 no. 1, (2018) 011026, arXiv:1705.09313 [cond-mat.str-el].
- J. Wang and Y.-Z. You, “Symmetric Mass Generation,” Symmetry 14 no. 7, (2022) 1475, arXiv:2204.14271 [cond-mat.str-el].
- T. D. Brennan, “A New Solution to the Callan Rubakov Effect,” arXiv:2309.00680 [hep-th].
- A. Cherman, S. Sen, M. Unsal, M. L. Wagman, and L. G. Yaffe, “Order parameters and color-flavor center symmetry in QCD,” Phys. Rev. Lett. 119 no. 22, (2017) 222001, arXiv:1706.05385 [hep-th].
- C. Callias, “Index Theorems on Open Spaces,” Commun. Math. Phys. 62 (1978) 213–234.
- G. W. Moore, A. B. Royston, and D. Van den Bleeken, “Parameter counting for singular monopoles on ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” JHEP 10 (2014) 142, arXiv:1404.5616 [hep-th].