Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anomalies of 4d $Spin_G$ Theories (2312.04756v3)

Published 7 Dec 2023 in hep-th

Abstract: We consider 't Hooft anomalies of four-dimensional gauge theories whose fermion matter content admits $Spin_G(4)$ generalized spin structure, with $G$ either gauged or a global symmetry. We discuss methods to directly compute $w_2\cup w_3$ 't Hooft anomalies involving Stiefel-Whitney classes of gauge and flavor symmetry bundles that such theories can have on non-spin manifolds, e.g. $M_4=\mathbb{CP}2$. Such anomalies have been discussed for $SU(2)$ gauge theory with adjoint fermions, where they were shown to give an effect that was originally found in the Donaldson-Witten topological twist of ${\cal N}=2$ SYM theory. We directly compute these anomalies for a variety of theories, including general $G$ gauge theories with adjoint fermions, $SU(2)$ gauge theory with fermions in general representations, and $Spin(N)$ gauge theories with fundamental matter. We discuss aspects of matching these and other 't Hooft anomalies in the IR phase where global symmetries are spontaneously broken, in particular for general $G_{\rm gauge}$ theory with $N_f$ adjoint Weyl fermions. For example, in the case of $N_f=2$ we discuss anomaly matching in the IR phase consisting of $h\vee {G{\rm gauge}}$ copies of a $\mathbb{CP}1$ non-linear sigma model, including for the $w_2w_3$ anomalies when formulated with $Spin_{SU(2)_{\rm global}}(4)$ structure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (116)
  1. J. McGreevy, “Generalized Symmetries in Condensed Matter,” arXiv:2204.03045 [cond-mat.str-el].
  2. C. Cordova, T. T. Dumitrescu, K. Intriligator, and S.-H. Shao, “Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond,” in Snowmass 2021. 5, 2022. arXiv:2205.09545 [hep-th].
  3. S. Schafer-Nameki, “ICTP Lectures on (Non-)Invertible Generalized Symmetries,” arXiv:2305.18296 [hep-th].
  4. T. D. Brennan and S. Hong, “Introduction to Generalized Global Symmetries in QFT and Particle Physics,” arXiv:2306.00912 [hep-ph].
  5. L. Bhardwaj, L. E. Bottini, L. Fraser-Taliente, L. Gladden, D. S. W. Gould, A. Platschorre, and H. Tillim, “Lectures on Generalized Symmetries,” arXiv:2307.07547 [hep-th].
  6. S.-H. Shao, “What’s Done Cannot Be Undone: TASI Lectures on Non-Invertible Symmetry,” arXiv:2308.00747 [hep-th].
  7. I. n. García-Etxebarria, H. Hayashi, K. Ohmori, Y. Tachikawa, and K. Yonekura, “8d gauge anomalies and the topological Green-Schwarz mechanism,” JHEP 11 (2017) 177, arXiv:1710.04218 [hep-th].
  8. C. Córdova and K. Ohmori, “Anomaly Obstructions to Symmetry Preserving Gapped Phases,” arXiv:1910.04962 [hep-th].
  9. C. Córdova and K. Ohmori, “Anomaly Constraints on Gapped Phases with Discrete Chiral Symmetry,” Phys. Rev. D 102 no. 2, (2020) 025011, arXiv:1912.13069 [hep-th].
  10. T. D. Brennan, “Anomaly Enforced Gaplessness and Symmetry Fractionalization for S⁢p⁢i⁢nG𝑆𝑝𝑖subscript𝑛𝐺Spin_{G}italic_S italic_p italic_i italic_n start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT Symmetries,” arXiv:2308.12999 [hep-th].
  11. T. D. Brennan and A. Sheckler, “Anomaly Enforced Gaplessness for Background Flux Anomalies and Symmetry Fractionalization,” arXiv:2311.00093 [hep-th].
  12. E. Witten, “Global Aspects of Current Algebra,” Nucl. Phys. B 223 (1983) 422–432.
  13. L. Alvarez-Gaume and E. Witten, “Gravitational Anomalies,” Nucl. Phys. B 234 (1984) 269.
  14. L. Alvarez-Gaume and P. H. Ginsparg, “The Structure of Gauge and Gravitational Anomalies,” Annals Phys. 161 (1985) 423. [Erratum: Annals Phys. 171, 233 (1986)].
  15. C. G. Callan, Jr. and J. A. Harvey, “Anomalies and Fermion Zero Modes on Strings and Domain Walls,” Nucl. Phys. B 250 (1985) 427–436.
  16. D. S. Freed and M. J. Hopkins, “Reflection positivity and invertible topological phases,” Geom. Topol. 25 (2021) 1165–1330, arXiv:1604.06527 [hep-th].
  17. E. Witten, “GLOBAL GRAVITATIONAL ANOMALIES,” Commun. Math. Phys. 100 (1985) 197.
  18. X.-z. Dai and D. S. Freed, “eta invariants and determinant lines,” J. Math. Phys. 35 (1994) 5155–5194, arXiv:hep-th/9405012. [Erratum: J.Math.Phys. 42, 2343–2344 (2001)].
  19. E. Witten and K. Yonekura, “Anomaly Inflow and the η𝜂\etaitalic_η-Invariant,” in The Shoucheng Zhang Memorial Workshop. 9, 2019. arXiv:1909.08775 [hep-th].
  20. A. Kapustin, “Symmetry Protected Topological Phases, Anomalies, and Cobordisms: Beyond Group Cohomology,” arXiv:1403.1467 [cond-mat.str-el].
  21. D. S. Freed, “Short-range entanglement and invertible field theories,” arXiv:1406.7278 [cond-mat.str-el].
  22. R. Thorngren, “Framed Wilson Operators, Fermionic Strings, and Gravitational Anomaly in 4d,” JHEP 02 (2015) 152, arXiv:1404.4385 [hep-th].
  23. C. Córdova and T. T. Dumitrescu, “Candidate Phases for SU(2) Adjoint QCD44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT with Two Flavors from 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 Supersymmetric Yang-Mills Theory,” arXiv:1806.09592 [hep-th].
  24. J. Wang, X.-G. Wen, and E. Witten, “A New SU(2) Anomaly,” J. Math. Phys. 60 no. 5, (2019) 052301, arXiv:1810.00844 [hep-th].
  25. Z. Wan and J. Wang, “Adjoint QCD44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT, Deconfined Critical Phenomena, Symmetry-Enriched Topological Quantum Field Theory, and Higher Symmetry-Extension,” Phys. Rev. D 99 no. 6, (2019) 065013, arXiv:1812.11955 [hep-th].
  26. Y. Lee, K. Ohmori, and Y. Tachikawa, “Revisiting Wess-Zumino-Witten terms,” SciPost Phys. 10 no. 3, (2021) 061, arXiv:2009.00033 [hep-th].
  27. S. M. Kravec, J. McGreevy, and B. Swingle, “All-fermion electrodynamics and fermion number anomaly inflow,” Phys. Rev. D 92 no. 8, (2015) 085024, arXiv:1409.8339 [hep-th].
  28. E. Witten, “An SU(2) Anomaly,” Phys. Lett. B 117 (1982) 324–328.
  29. K. A. Intriligator, N. Seiberg, and S. H. Shenker, “Proposal for a simple model of dynamical SUSY breaking,” Phys. Lett. B 342 (1995) 152–154, arXiv:hep-ph/9410203.
  30. T. D. Brennan, C. Cordova, and T. T. Dumitrescu, “Line Defect Quantum Numbers & Anomalies,” arXiv:2206.15401 [hep-th].
  31. M. M. Anber and E. Poppitz, “Generalized ’t Hooft anomalies on non-spin manifolds,” JHEP 04 (2020) 097, arXiv:2002.02037 [hep-th].
  32. M. M. Anber and E. Poppitz, “On the baryon-color-flavor (BCF) anomaly in vector-like theories,” JHEP 11 (2019) 063, arXiv:1909.09027 [hep-th].
  33. S. K. Donaldson, “An application of gauge theory to four-dimensional topology,” J. Diff. Geom. 18 no. 2, (1983) 279–315.
  34. S. K. Donaldson, “Polynomial invariants for smooth manifolds,” Topology 29 (1990) 257–315.
  35. E. Witten, “Supersymmetric Yang-Mills theory on a four manifold,” J. Math. Phys. 35 (1994) 5101–5135, arXiv:hep-th/9403195.
  36. E. Witten, “Monopoles and four manifolds,” Math. Res. Lett. 1 (1994) 769–796, arXiv:hep-th/9411102.
  37. G. W. Moore and E. Witten, “Integration over the u plane in Donaldson theory,” Adv. Theor. Math. Phys. 1 (1997) 298–387, arXiv:hep-th/9709193.
  38. E. Witten, “On S duality in Abelian gauge theory,” Selecta Math. 1 (1995) 383, arXiv:hep-th/9505186.
  39. S. S. Razamat and D. Tong, “Gapped Chiral Fermions,” Phys. Rev. X 11 no. 1, (2021) 011063, arXiv:2009.05037 [hep-th].
  40. D. Tong, “Comments on symmetric mass generation in 2d and 4d,” JHEP 07 (2022) 001, arXiv:2104.03997 [hep-th].
  41. P. B. Smith, A. Karasik, N. Lohitsiri, and D. Tong, “On discrete anomalies in chiral gauge theories,” JHEP 01 (2022) 112, arXiv:2106.06402 [hep-th].
  42. C. Cordova and K. Ohmori, “Noninvertible Chiral Symmetry and Exponential Hierarchies,” Phys. Rev. X 13 no. 1, (2023) 011034, arXiv:2205.06243 [hep-th].
  43. Y. Choi, H. T. Lam, and S.-H. Shao, “Noninvertible Global Symmetries in the Standard Model,” Phys. Rev. Lett. 129 no. 16, (2022) 161601, arXiv:2205.05086 [hep-th].
  44. C.-T. Hsieh, “Discrete gauge anomalies revisited,” arXiv:1808.02881 [hep-th].
  45. D. Delmastro, J. Gomis, P.-S. Hsin, and Z. Komargodski, “Anomalies and Symmetry Fractionalization,” arXiv:2206.15118 [hep-th].
  46. Y. Sato, Y. Tachikawa, and T. Watari, “On odd number of fermion zero modes on solitons in quantum field theory and string/M theory,” JHEP 09 (2022) 043, arXiv:2205.13185 [hep-th].
  47. K. A. Intriligator and N. Seiberg, “Duality, monopoles, dyons, confinement and oblique confinement in supersymmetric SO(N(c)) gauge theories,” Nucl. Phys. B 444 (1995) 125–160, arXiv:hep-th/9503179.
  48. C. Csaki and H. Murayama, “Instantons in partially broken gauge groups,” Nucl. Phys. B 532 (1998) 498–526, arXiv:hep-th/9804061.
  49. E. Witten, “Topological Quantum Field Theory,” Commun. Math. Phys. 117 (1988) 353.
  50. A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and Duality,” JHEP 04 (2014) 001, arXiv:1401.0740 [hep-th].
  51. Y. Lee, K. Ohmori, and Y. Tachikawa, “Matching higher symmetries across Intriligator-Seiberg duality,” JHEP 10 (2021) 114, arXiv:2108.05369 [hep-th].
  52. J. Kaidi, K. Ohmori, and Y. Zheng, “Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories,” Phys. Rev. Lett. 128 no. 11, 111601, arXiv:2111.01141 [hep-th].
  53. J. Kaidi, E. Nardoni, G. Zafrir, and Y. Zheng, “Symmetry TFTs and Anomalies of Non-Invertible Symmetries,” arXiv:2301.07112 [hep-th].
  54. I. Bah, E. Leung, and T. Waddleton, “Non-Invertible Symmetries, Brane Dynamics, and Tachyon Condensation,” arXiv:2306.15783 [hep-th].
  55. F. Apruzzi, I. Bah, F. Bonetti, and S. Schafer-Nameki, “Noninvertible Symmetries from Holography and Branes,” Phys. Rev. Lett. 130 no. 12, (2023) 121601, arXiv:2208.07373 [hep-th].
  56. Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions,” Commun. Math. Phys. 402 no. 1, (2023) 489–542, arXiv:2204.09025 [hep-th].
  57. Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Noninvertible duality defects in 3+1 dimensions,” Phys. Rev. D 105 no. 12, (2022) 125016, arXiv:2111.01139 [hep-th].
  58. Y. Tachikawa, “On gauging finite subgroups,” SciPost Phys. 8 no. 1, (2020) 015, arXiv:1712.09542 [hep-th].
  59. F. Benini, C. Córdova, and P.-S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019) 118, arXiv:1803.09336 [hep-th].
  60. P.-S. Hsin and H. T. Lam, “Discrete theta angles, symmetries and anomalies,” SciPost Phys. 10 no. 2, (2021) 032, arXiv:2007.05915 [hep-th].
  61. A. Kapustin, “Bosonic Topological Insulators and Paramagnets: a view from cobordisms,” arXiv:1404.6659 [cond-mat.str-el].
  62. A. Hatcher, Algebraic Topology. Cambridge University Press, Cambridge, 2001.
  63. K. A. Intriligator and N. Seiberg, “Lectures on supersymmetric gauge theories and electric-magnetic duality,” Nucl. Phys. B Proc. Suppl. 45BC (1996) 1–28, arXiv:hep-th/9509066.
  64. C. Vafa and E. Witten, “Restrictions on Symmetry Breaking in Vector-Like Gauge Theories,” Nucl. Phys. B 234 (1984) 173–188.
  65. J. Wess and B. Zumino, “Consequences of anomalous Ward identities,” Phys. Lett. B 37 (1971) 95–97.
  66. D. S. Freed, “Pions and Generalized Cohomology,” J. Diff. Geom. 80 no. 1, (2008) 45–77, arXiv:hep-th/0607134.
  67. D. S. Freed, Z. Komargodski, and N. Seiberg, “The Sum Over Topological Sectors and θ𝜃\thetaitalic_θ in the 2+1-Dimensional ℂ⁢ℙ1ℂsuperscriptℙ1\mathbb{C}\mathbb{P}^{1}blackboard_C blackboard_P start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT σ𝜎\sigmaitalic_σ-Model,” Commun. Math. Phys. 362 no. 1, (2018) 167–183, arXiv:1707.05448 [cond-mat.str-el].
  68. D.-C. Lu, “Nonlinear sigma model description of deconfined quantum criticality in arbitrary dimensions,” SciPost Phys. Core 6 (2023) 047, arXiv:2209.00670 [cond-mat.str-el].
  69. S. Chen and Y. Tanizaki, “Solitonic symmetry beyond homotopy: invertibility from bordism and non-invertibility from TQFT,” arXiv:2210.13780 [hep-th].
  70. P.-S. Hsin, “Non-Invertible Defects in Nonlinear Sigma Models and Coupling to Topological Orders,” arXiv:2212.08608 [cond-mat.str-el].
  71. S. Chen and Y. Tanizaki, “Solitonic symmetry as non-invertible symmetry: cohomology theories with TQFT coefficients,” arXiv:2307.00939 [hep-th].
  72. S. D. Pace, “Emergent generalized symmetries in ordered phases,” arXiv:2308.05730 [cond-mat.str-el].
  73. S. D. Pace, C. Zhu, A. Beaudry, and X.-G. Wen, “Generalized symmetries in singularity-free nonlinear σ𝜎\sigmaitalic_σ-models and their disordered phases,” arXiv:2310.08554 [cond-mat.str-el].
  74. D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
  75. D. Delmastro and J. Gomis, “Domain walls in 4d𝒩𝒩\mathcal{N}caligraphic_N = 1 SYM,” JHEP 03 (2021) 259, arXiv:2004.11395 [hep-th].
  76. S. Bolognesi and M. Shifman, “The Hopf Skyrmion in QCD with Adjoint Quarks,” Phys. Rev. D 75 (2007) 065020, arXiv:hep-th/0701065.
  77. L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago, “Conformal versus confining scenario in SU(2) with adjoint fermions,” Phys. Rev. D 80 (2009) 074507, arXiv:0907.3896 [hep-lat].
  78. T. DeGrand, Y. Shamir, and B. Svetitsky, “Infrared fixed point in SU(2) gauge theory with adjoint fermions,” Phys. Rev. D 83 (2011) 074507, arXiv:1102.2843 [hep-lat].
  79. T. DeGrand, Y. Shamir, and B. Svetitsky, “Near the Sill of the Conformal Window: Gauge Theories with Fermions in Two-Index Representations,” Phys. Rev. D 88 no. 5, (2013) 054505, arXiv:1307.2425 [hep-lat].
  80. M. Shifman, “Remarks on Adjoint QCD with k𝑘kitalic_k Flavors, k≥2𝑘2k\geq 2italic_k ≥ 2,” Mod. Phys. Lett. A 28 (2013) 1350179, arXiv:1307.5826 [hep-th].
  81. G. Basar, A. Cherman, D. Dorigoni, and M. Ünsal, “Volume Independence in the Large N𝑁Nitalic_N Limit and an Emergent Fermionic Symmetry,” Phys. Rev. Lett. 111 no. 12, (2013) 121601, arXiv:1306.2960 [hep-th].
  82. A. Athenodorou, E. Bennett, G. Bergner, and B. Lucini, “Infrared regime of SU(2) with one adjoint Dirac flavor,” Phys. Rev. D 91 no. 11, (2015) 114508, arXiv:1412.5994 [hep-lat].
  83. M. M. Anber and E. Poppitz, “Domain walls in high-T SU(N) super Yang-Mills theory and QCD(adj),” JHEP 05 (2019) 151, arXiv:1811.10642 [hep-th].
  84. M. M. Anber and E. Poppitz, “Two-flavor adjoint QCD,” Phys. Rev. D 98 no. 3, (2018) 034026, arXiv:1805.12290 [hep-th].
  85. Z. Bi and T. Senthil, “Adventure in Topological Phase Transitions in 3+1 -D: Non-Abelian Deconfined Quantum Criticalities and a Possible Duality,” Phys. Rev. X 9 no. 2, (2019) 021034, arXiv:1808.07465 [cond-mat.str-el].
  86. E. Poppitz and T. A. Ryttov, “Possible new phase for adjoint QCD,” Phys. Rev. D 100 no. 9, (2019) 091901, arXiv:1904.11640 [hep-th].
  87. O. Aharony, N. Seiberg, and Y. Tachikawa, “Reading between the lines of four-dimensional gauge theories,” JHEP 08 (2013) 115, arXiv:1305.0318 [hep-th].
  88. C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, “Anomalies in the Space of Coupling Constants and Their Dynamical Applications II,” SciPost Phys. 8 no. 1, (2020) 002, arXiv:1905.13361 [hep-th].
  89. M. Guo, K. Ohmori, P. Putrov, Z. Wan, and J. Wang, “Fermionic Finite-Group Gauge Theories and Interacting Symmetric/Crystalline Orders via Cobordisms,” Commun. Math. Phys. 376 no. 2, (2020) 1073–1154, arXiv:1812.11959 [hep-th].
  90. A. A. Cox, E. Poppitz, and F. D. Wandler, “The mixed 0-form/1-form anomaly in Hilbert space: pouring the new wine into old bottles,” JHEP 10 (2021) 069, arXiv:2106.11442 [hep-th].
  91. E. Witten, “Current Algebra, Baryons, and Quark Confinement,” Nucl. Phys. B 223 (1983) 433–444.
  92. K. M. Benson, A. V. Manohar, and M. Saadi, “QCD flux tubes as sigma model relics,” Phys. Rev. Lett. 74 (1995) 1932–1935, arXiv:hep-th/9409042.
  93. K. M. Benson and M. Saadi, “QCD flux tubes in a current algebra approach,” Phys. Rev. D 51 (1995) 3096–3107, arXiv:hep-th/9409109.
  94. R. Auzzi and M. Shifman, “Low-Energy Limit of Yang-Mills with Massless Adjoint Quarks: Chiral Lagrangian and Skyrmions,” J. Phys. A 40 (2007) 6221–6238, arXiv:hep-th/0612211.
  95. S. Bolognesi, “Skyrmions in Orientifold and Adjoint QCD,” arXiv:0901.3796 [hep-th].
  96. Z.-C. Gu and X.-G. Wen, “Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ𝜎\sigmaitalic_σ models and a special group supercohomology theory,” Phys. Rev. B 90 no. 11, (2014) 115141, arXiv:1201.2648 [cond-mat.str-el].
  97. C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, “Anomalies in the Space of Coupling Constants and Their Dynamical Applications I,” SciPost Phys. 8 no. 1, (2020) 001, arXiv:1905.09315 [hep-th].
  98. K. Yonekura, “General anomaly matching by Goldstone bosons,” JHEP 03 (2021) 057, arXiv:2009.04692 [hep-th].
  99. M. Dierigl and A. Pritzel, “Topological Model for Domain Walls in (Super-)Yang-Mills Theories,” Phys. Rev. D 90 no. 10, (2014) 105008, arXiv:1405.4291 [hep-th].
  100. R. Auzzi, S. Bolognesi, and M. Shifman, “Skyrmions in Yang-Mills Theories with Massless Adjoint Quarks,” Phys. Rev. D 77 (2008) 125029, arXiv:0804.0229 [hep-th].
  101. N. Seiberg and E. Witten, “Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory,” Nucl. Phys. B 426 (1994) 19–52, arXiv:hep-th/9407087. [Erratum: Nucl.Phys.B 430, 485–486 (1994)].
  102. E. D’Hoker, T. T. Dumitrescu, E. Gerchkovitz, and E. Nardoni, “Revisiting the multi-monopole point of SU(N) 𝒩𝒩\mathcal{N}caligraphic_N = 2 gauge theory in four dimensions,” JHEP 09 (2021) 003, arXiv:2012.11843 [hep-th].
  103. E. D’Hoker, T. T. Dumitrescu, and E. Nardoni, “Exploring the strong-coupling region of SU(N) Seiberg-Witten theory,” JHEP 11 (2022) 102, arXiv:2208.11502 [hep-th].
  104. L. D. Faddeev and A. J. Niemi, “Knots and particles,” Nature 387 (1997) 58, arXiv:hep-th/9610193.
  105. F. Wilczek and A. Zee, “Linking Numbers, Spin, and Statistics of Solitons,” Phys. Rev. Lett. 51 (1983) 2250–2252.
  106. S. Krusch and J. M. Speight, “Fermionic quantization of Hopf solitons,” Commun. Math. Phys. 264 (2006) 391–410, arXiv:hep-th/0503067.
  107. D. Finkelstein and J. Rubinstein, “Connection between spin, statistics, and kinks,” J. Math. Phys. 9 (1968) 1762–1779.
  108. L. Fidkowski and A. Kitaev, “The effects of interactions on the topological classification of free fermion systems,” Phys. Rev. B 81 (2010) 134509, arXiv:0904.2197 [cond-mat.str-el].
  109. L. Fidkowski and A. Kitaev, “Topological phases of fermions in one dimension,” Phys. Rev. B 83 (2011) 75103–75116.
  110. M. Zeng, Z. Zhu, J. Wang, and Y.-Z. You, “Symmetric Mass Generation in the 1+1 Dimensional Chiral Fermion 3-4-5-0 Model,” Phys. Rev. Lett. 128 no. 18, (2022) 185301, arXiv:2202.12355 [cond-mat.str-el].
  111. Y.-Z. You, Y.-C. He, C. Xu, and A. Vishwanath, “Symmetric Fermion Mass Generation as Deconfined Quantum Criticality,” Phys. Rev. X 8 no. 1, (2018) 011026, arXiv:1705.09313 [cond-mat.str-el].
  112. J. Wang and Y.-Z. You, “Symmetric Mass Generation,” Symmetry 14 no. 7, (2022) 1475, arXiv:2204.14271 [cond-mat.str-el].
  113. T. D. Brennan, “A New Solution to the Callan Rubakov Effect,” arXiv:2309.00680 [hep-th].
  114. A. Cherman, S. Sen, M. Unsal, M. L. Wagman, and L. G. Yaffe, “Order parameters and color-flavor center symmetry in QCD,” Phys. Rev. Lett. 119 no. 22, (2017) 222001, arXiv:1706.05385 [hep-th].
  115. C. Callias, “Index Theorems on Open Spaces,” Commun. Math. Phys. 62 (1978) 213–234.
  116. G. W. Moore, A. B. Royston, and D. Van den Bleeken, “Parameter counting for singular monopoles on ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” JHEP 10 (2014) 142, arXiv:1404.5616 [hep-th].
Citations (5)

Summary

We haven't generated a summary for this paper yet.