Experimental Demonstration of Fermionic QAOA with One-Dimensional Cyclic Driver Hamiltonian (2312.04710v1)
Abstract: Quantum approximate optimization algorithm (QAOA) has attracted much attention as an algorithm that has the potential to efficiently solve combinatorial optimization problems. Among them, a fermionic QAOA (FQAOA) for solving constrained optimization problems has been developed [Yoshioka, Sasada, Nakano, and Fujii, Phys. Rev. Research vol. 5, 023071, 2023]. In this algorithm, the constraints are essentially imposed as fermion number conservation at arbitrary approximation level. We take the portfolio optimization problem as an application example and propose a new driver Hamiltonian on an one-dimensional cyclic lattice. Our FQAOA with the new driver Hamiltonian reduce the number of gate operations in quantum circuits. Experiments on a trapped-ion quantum computer using 16 qubits on Amazon Braket demonstrates that the proposed driver Hamiltonian effectively suppresses noise effects compared to the previous FQAOA.