Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak Supervision Performance Evaluation via Partial Identification (2312.04601v2)

Published 7 Dec 2023 in stat.ML, cs.AI, cs.LG, and stat.ME

Abstract: Programmatic Weak Supervision (PWS) enables supervised model training without direct access to ground truth labels, utilizing weak labels from heuristics, crowdsourcing, or pre-trained models. However, the absence of ground truth complicates model evaluation, as traditional metrics such as accuracy, precision, and recall cannot be directly calculated. In this work, we present a novel method to address this challenge by framing model evaluation as a partial identification problem and estimating performance bounds using Fr\'echet bounds. Our approach derives reliable bounds on key metrics without requiring labeled data, overcoming core limitations in current weak supervision evaluation techniques. Through scalable convex optimization, we obtain accurate and computationally efficient bounds for metrics including accuracy, precision, recall, and F1-score, even in high-dimensional settings. This framework offers a robust approach to assessing model quality without ground truth labels, enhancing the practicality of weakly supervised learning for real-world applications.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets