Papers
Topics
Authors
Recent
Search
2000 character limit reached

Parameter Inference for Hypo-Elliptic Diffusions under a Weak Design Condition

Published 7 Dec 2023 in math.ST, stat.ME, and stat.TH | (2312.04444v2)

Abstract: We address the problem of parameter estimation for degenerate diffusion processes defined via the solution of Stochastic Differential Equations (SDEs) with diffusion matrix that is not full-rank. For this class of hypo-elliptic diffusions recent works have proposed contrast estimators that are asymptotically normal, provided that the step-size in-between observations $\Delta=\Delta_n$ and their total number $n$ satisfy $n \to \infty$, $n \Delta_n \to \infty$, $\Delta_n \to 0$, and additionally $\Delta_n = o (n{-1/2})$. This latter restriction places a requirement for a so-called `rapidly increasing experimental design'. In this paper, we overcome this limitation and develop a general contrast estimator satisfying asymptotic normality under the weaker design condition $\Delta_n = o(n{-1/p})$ for general $p \ge 2$. Such a result has been obtained for elliptic SDEs in the literature, but its derivation in a hypo-elliptic setting is highly non-trivial. We provide numerical results to illustrate the advantages of the developed theory.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.