Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Circular Nets with Spherical Parameter Lines and Terminating Laplace Sequences (2312.04341v1)

Published 7 Dec 2023 in math.DG and math.MG

Abstract: The focus is on circular nets with one or two families of spherical parameter lines, which are treated in M\"obius geometry. These circular nets provide a discretisation of surfaces with one or two families of spherical curvature lines. The special cases of planar, circular and linear parameter lines are also investigated. A Lie-geometric discretisation in terms of principal contact element nets is also presented. Its properties are analogous to the classical properties of surfaces with one or two families of spherical curvature lines. Circular nets with two families of spherical parameter lines have geometric properties that are related to Darboux cyclides. Circular nets with one or two families of spherical parameter lines are examples of Q-nets with terminating Laplace sequences. More generally, this article considers Q-nets that are inscribed in quadrics and that have terminating Laplace sequences.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. Abresch, U. Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math. 374 (1987), 169–192.
  2. Bernstein, H. Non-special, non-canal isothermic tori with spherical lines of curvature. Trans. Amer. Math. Soc. 353, 6 (2001), 2245–2274.
  3. Blaschke, W. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie III: Differentialgeometrie der Kreise und Kugeln, vol. 29. Springer-Verlag, Berlin, 1929.
  4. Compact Bonnet pairs: isometric tori with the same curvatures. arXiv 2110.06335 (2021).
  5. Discrete and smooth orthogonal systems: C∞superscript𝐶C^{\infty}italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-approximation. Int. Math. Res. Not. 2003, 45 (2003), 2415–2459.
  6. Multi-nets. Classification of discrete and smooth surfaces with characteristic properties on arbitrary parameter rectangles. Discrete & Computational Geometry 63 (2019), 624–655.
  7. Checkerboard incircular nets: Laguerre geometry and parametrisation. Geom. Dedicata 204 (2020), 97–129.
  8. On organizing principles of discrete differential geometry. Geometry of spheres. Russian Mathematical Surveys 62, 1 (2007).
  9. Discrete Differential Geometry, vol. 98 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
  10. The curvature line parametrization from circular nets on a surface. J. Math. Phys. 59, 9 (2018), 091410, 18.
  11. Bol, G. Projektive Differentialgeometrie. Teil I. Vandenhoeck & Ruprecht, Göttingen, 1950.
  12. Bonnet, O. Mémoire sur les surfaces dont les lignes de courbure sont planes ou sphériques. Mallet-Bachelier, 1853.
  13. Casey, J. On bicircular quartics. The Transactions of the Royal Irish Academy 24 (1871), 457–569.
  14. Casey, J. On cyclides and sphero-quartics. Philosophical Transactions of the Royal Society of London 161 (1871), 585–721.
  15. Cecil, T. E. Lie sphere geometry, second ed. Universitext. Springer, New York, 2008.
  16. Constrained elastic curves and surfaces with spherical curvature lines. arXiv 2104.11058 (2021).
  17. The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices. Physics Letters A 235, 5 (1997), 480–488.
  18. Coolidge, J. L. A Treatise on the Circle and the Sphere. Oxford University Press, Oxford, 1916.
  19. Darboux, G. Sur une Classe Remarquable de Courbes et de Surfaces Algébriques et sur la Théorie des Imaginaires. Gauthier-Villars, Paris, 1873.
  20. Darboux, G. Lecons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal: 2ème Partie. Gauthier-Villars, Paris, 1889.
  21. Darboux, G. Lecons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal: 4ème Partie. Gauthier-Villars, Paris, 1896.
  22. Doliwa, A. Geometric discretisation of the Toda system. Phys. Lett. A 234, 3 (1997), 187–192.
  23. Doliwa, A. Quadratic reductions of quadrilateral lattices. J. Geom. Phys. 30, 2 (1999), 169–186.
  24. Doliwa, A. Lattice geometry of the Hirota equation. In SIDE III—symmetries and integrability of difference equations (Sabaudia, 1998), vol. 25 of CRM Proc. Lecture Notes. Amer. Math. Soc., Providence, RI, 2000, pp. 93–100.
  25. Eisenhart, L. P. A treatise on the differential geometry of curves and surfaces. Ginn and Co., Boston, 1909.
  26. Goursat, E. Sur les Equations Lineaires et la Methode de Laplace. Amer. J. Math. 18, 4 (1896), 347–385.
  27. Hertrich-Jeromin, U. Introduction to Möbius differential geometry, vol. 300 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003.
  28. Discrete channel surfaces. Math. Z. 294, 1-2 (2020), 747–767.
  29. Planar panels and planar supporting beams in architectural structures. ACM Trans. Graphics 41 (2022).
  30. Smooth and Discrete Cone-Nets. Results Math. 78, 3 (2023), Paper No. 110.
  31. Kummer, E. E. Über die Flächen vierten Grades, auf welchen Schaaren von Kegelschnitten liegen. J. Reine Angew. Math. 64 (1865), 66–76.
  32. Lane, E. P. Projective differential geometry of curves and surfaces. University of Chicago Press, Chicago, Ill., 1932.
  33. Lane, E. P. A Treatise on Projective Differential Geometry. University of Chicago Press, Chicago, Ill., 1942.
  34. Lemonnier, H. G. Des surfaces dont les lignes de courbure sont planes ou sphériques. E. Thunot et cie., Paris, 1868.
  35. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graphics 25, 3 (2006), 681–689. Proc. SIGGRAPH.
  36. Kinematic generation of Darboux cyclides. Comput. Aided Geom. Design 64 (2018), 11–14.
  37. Moutard, T. F. Note sur la transformation par rayons vecteurs réciproques. Nouvelles annales de mathématiques: journal des candidats aux écoles polytechnique et normale 2e série, 3 (1864), 306–309.
  38. Moutard, T. F. Sur les surfaces anallagmatiques du quatrième ordre. Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale 2e série, 3 (1864), 536–539.
  39. Laguerre geometry of surfaces with plane lines of curvature. Abh. Math. Sem. Univ. Hamburg 69 (1999), 123–138.
  40. Differential geometry applied to curve and surface design. Vol. 1. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1988.
  41. The universe of quadrics. Springer, Berlin, 2020.
  42. Picart, A. Essai d’une théorie géométrique des surfaces. PhD thesis, Faculté des sciences de Paris, Paris, France, 1863.
  43. Geometry of multi-layer freeform structures for architecture. ACM Trans. Graph. 26, 3 (2007), 65–es.
  44. Darboux cyclides and webs from circles. Comput. Aided Geom. Design 29, 1 (2012), 77–97.
  45. The focal geometry of circular and conical meshes. Adv. Comput. Math. 29, 3 (2008), 249–268.
  46. The Ribaucour families of discrete R-congruences. Geom. Dedicata 214 (2021), 251–275.
  47. Rouquet, P. V. Étude géométrique des surfaces dont les lignes de courbure d’un système sont planes. Imp. de Douladoure-Privat, 1882.
  48. Sauer, R. Differenzengeometrie. Springer, Berlin, 1970.
  49. Segre, C. Etude des différentes surfaces du 4e ordre à conique double ou cuspidale (générale ou décomposée) considérées comme des projections de l’intersection de deux variétés quadratiques de l’espace à quatre dimensions. Math. Ann. 24, 3 (1884), 313–444.
  50. Serret, J.-A. Mémoire sur les surfaces dont toutes les lignes de courbure sont planes ou sphériques. Journal de Mathématiques Pures et Appliquées 18 (1853), 113–162.
  51. Surfaces containing two circles through each point. Math. Ann. 373, 3-4 (2019), 1299–1327.
  52. Snyder, V. On developable and tubular surfaces having spherical lines of curvature. Bull. Amer. Math. Soc. 11, 1 (1904), 1–6.
  53. Surfaces with planar curvature lines: Discretization, generation and application to the rationalization of curved architectural envelopes. Automation in Construction 106 (2019), 102880.
  54. Tzitzéica, G. Géométrie différentielle projective des réseaux. Académie roumaine. Études et recherches. Cultura Nationala, Bucharest, 1924.
  55. Walter, R. Explicit examples to the H𝐻Hitalic_H-problem of Heinz Hopf. Geom. Dedicata 23, 2 (1987), 187–213.
  56. Wente, H. C. Constant mean curvature immersions of Enneper type. Mem. Amer. Math. Soc. 100, 478 (1992), vi+77.
Citations (1)

Summary

We haven't generated a summary for this paper yet.