Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cost-Effective In-Context Learning for Entity Resolution: A Design Space Exploration (2312.03987v1)

Published 7 Dec 2023 in cs.CL and cs.AI

Abstract: Entity resolution (ER) is an important data integration task with a wide spectrum of applications. The state-of-the-art solutions on ER rely on pre-trained LLMs (PLMs), which require fine-tuning on a lot of labeled matching/non-matching entity pairs. Recently, large languages models (LLMs), such as GPT-4, have shown the ability to perform many tasks without tuning model parameters, which is known as in-context learning (ICL) that facilitates effective learning from a few labeled input context demonstrations. However, existing ICL approaches to ER typically necessitate providing a task description and a set of demonstrations for each entity pair and thus have limitations on the monetary cost of interfacing LLMs. To address the problem, in this paper, we provide a comprehensive study to investigate how to develop a cost-effective batch prompting approach to ER. We introduce a framework BATCHER consisting of demonstration selection and question batching and explore different design choices that support batch prompting for ER. We also devise a covering-based demonstration selection strategy that achieves an effective balance between matching accuracy and monetary cost. We conduct a thorough evaluation to explore the design space and evaluate our proposed strategies. Through extensive experiments, we find that batch prompting is very cost-effective for ER, compared with not only PLM-based methods fine-tuned with extensive labeled data but also LLM-based methods with manually designed prompting. We also provide guidance for selecting appropriate design choices for batch prompting.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Y. Li, J. Li, Y. Suhara, A. Doan, and W. Tan, “Deep entity matching with pre-trained language models,” Proc. VLDB Endow., vol. 14, no. 1, pp. 50–60, 2020.
  2. R. Peeters and C. Bizer, “Dual-objective fine-tuning of bert for entity matching,” Proc. VLDB Endow., vol. 14, no. 10, p. 1913–1921, 2021.
  3. M. Akbarian Rastaghi, E. Kamalloo, and D. Rafiei, “Probing the robustness of pre-trained language models for entity matching,” in Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2022, p. 3786–3790.
  4. J. Tu, J. Fan, N. Tang, P. Wang, G. Li, X. Du, X. Jia, and S. Gao, “Unicorn: A unified multi-tasking model for supporting matching tasks in data integration,” Proceedings of the ACM on Management of Data, vol. 1, no. 1, pp. 1–26, 2023.
  5. J. Tu, J. Fan, N. Tang, P. Wang, C. Chai, G. Li, R. Fan, and X. Du, “Domain adaptation for deep entity resolution,” in Proceedings of the 2022 International Conference on Management of Data, 2022, pp. 443–457.
  6. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in NeurIPS 2020, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.
  7. S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettlemoyer, “Rethinking the role of demonstrations: What makes in-context learning work?” arXiv preprint arXiv:2202.12837, 2022.
  8. J. Chen, L. Chen, and T. Zhou, “It takes one to tango but more make trouble? in-context training with different number of demonstrations,” arXiv preprint arXiv:2303.08119, 2023.
  9. L. Gao, A. Chaudhary, K. Srinivasan, K. Hashimoto, K. Raman, and M. Bendersky, “Ambiguity-aware in-context learning with large language models,” arXiv preprint arXiv:2309.07900, 2023.
  10. X. Wang, Y. Wang, C. Xu, X. Geng, B. Zhang, C. Tao, F. Rudzicz, R. E. Mercer, and D. Jiang, “Investigating the learning behaviour of in-context learning: A comparison with supervised learning,” arXiv preprint arXiv:2307.15411, 2023.
  11. A. Narayan, I. Chami, L. J. Orr, and C. Ré, “Can foundation models wrangle your data?” Proc. VLDB Endow., vol. 16, no. 4, pp. 738–746, 2022. [Online]. Available: https://www.vldb.org/pvldb/vol16/p738-narayan.pdf
  12. R. Peeters and C. Bizer, “Entity matching using large language models,” CoRR, vol. abs/2310.11244, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.11244
  13. O. Rubin, J. Herzig, and J. Berant, “Learning to retrieve prompts for in-context learning,” in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United States, July 10-15, 2022.   Association for Computational Linguistics, 2022, pp. 2655–2671. [Online]. Available: https://doi.org/10.18653/v1/2022.naacl-main.191
  14. Y. Zhang, K. Zhou, and Z. Liu, “What makes good examples for visual in-context learning?” arXiv preprint arXiv:2301.13670, 2023.
  15. X. Li, K. Lv, H. Yan, T. Lin, W. Zhu, Y. Ni, G. Xie, X. Wang, and X. Qiu, “Unified demonstration retriever for in-context learning,” arXiv preprint arXiv:2305.04320, 2023.
  16. S. Agrawal, C. Zhou, M. Lewis, L. Zettlemoyer, and M. Ghazvininejad, “In-context examples selection for machine translation,” in ACL, A. Rogers, J. L. Boyd-Graber, and N. Okazaki, Eds.   Association for Computational Linguistics, 2023, pp. 8857–8873. [Online]. Available: https://doi.org/10.18653/v1/2023.findings-acl.564
  17. G. Papadakis, D. Skoutas, E. Thanos, and T. Palpanas, “Blocking and filtering techniques for entity resolution: A survey,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–42, 2020.
  18. S. Thirumuruganathan, H. Li, N. Tang, M. Ouzzani, Y. Govind, D. Paulsen, G. Fung, and A. Doan, “Deep learning for blocking in entity matching: a design space exploration,” Proceedings of the VLDB Endowment, vol. 14, no. 11, pp. 2459–2472, 2021.
  19. C. Ge, P. Wang, L. Chen, X. Liu, B. Zheng, and Y. Gao, “Collaborem: a self-supervised entity matching framework using multi-features collaboration,” IEEE Transactions on Knowledge and Data Engineering, 2021.
  20. Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp, “Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity,” arXiv preprint arXiv:2104.08786, 2021.
  21. Y. Chen, C. Zhao, Z. Yu, K. McKeown, and H. He, “On the relation between sensitivity and accuracy in in-context learning,” arXiv preprint arXiv:2209.07661, 2022.
  22. Z. Wan, F. Cheng, Z. Mao, Q. Liu, H. Song, J. Li, and S. Kurohashi, “Gpt-re: In-context learning for relation extraction using large language models,” arXiv preprint arXiv:2305.02105, 2023.
  23. Z. Cheng, J. Kasai, and T. Yu, “Batch prompting: Efficient inference with large language model apis,” arXiv preprint arXiv:2301.08721, 2023.
  24. M. Luo, X. Xu, Z. Dai, P. Pasupat, M. Kazemi, C. Baral, V. Imbrasaite, and V. Y. Zhao, “Dr. icl: Demonstration-retrieved in-context learning,” arXiv preprint arXiv:2305.14128, 2023.
  25. K. Margatina, T. Schick, N. Aletras, and J. Dwivedi-Yu, “Active learning principles for in-context learning with large language models,” arXiv preprint arXiv:2305.14264, 2023.
  26. H. Zhang, Y. Dong, C. Xiao, and M. Oyamada, “Large language models as data preprocessors,” arXiv preprint arXiv:2308.16361, 2023.
  27. M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” in KDD, E. Simoudis, J. Han, and U. M. Fayyad, Eds., 1996, pp. 226–231.
  28. N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.
  29. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
  30. V. I. Levenshtein et al., “Binary codes capable of correcting deletions, insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8.   Soviet Union, 1966, pp. 707–710.
  31. J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen, “What makes good in-context examples for gpt-3?” in Proceedings of Deep Learning Inside Out: The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, DeeLIO@ACL 2022, Dublin, Ireland and Online, May 27, 2022.   Association for Computational Linguistics, 2022, pp. 100–114. [Online]. Available: https://doi.org/10.18653/v1/2022.deelio-1.10
  32. K. Bernhard and J. Vygen, “Combinatorial optimization: Theory and algorithms,” Springer, Third Edition, 2005., 2008.
  33. P. Slavík, “A tight analysis of the greedy algorithm for set cover,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 1996, pp. 435–441.
  34. A. Doan, P. Konda, P. S. G. C., Y. Govind, D. Paulsen, K. Chandrasekhar, P. Martinkus, and M. Christie, “Magellan: toward building ecosystems of entity matching solutions,” Commun. ACM, vol. 63, no. 8, pp. 83–91, 2020. [Online]. Available: https://doi.org/10.1145/3405476
  35. S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute, and V. Raghavendra, “Deep learning for entity matching: A design space exploration,” in Proceedings of the 2018 International Conference on Management of Data, 2018, pp. 19–34.
  36. J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “Crowder: Crowdsourcing entity resolution,” Proc. VLDB Endow., vol. 5, no. 11, pp. 1483–1494, 2012. [Online]. Available: http://vldb.org/pvldb/vol5/p1483\_jiannanwang\_vldb2012.pdf
  37. (2021) Code of jointbert. [Online]. Available: https://github.com/wbsg-uni-mannheim/jointbert
  38. (2022) Code of robem. [Online]. Available: https://github.com/makbn/robem
  39. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971, 2023.
  40. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton-Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,” CoRR, vol. abs/2307.09288, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.09288
  41. M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani, and N. Tang, “Distributed representations of tuples for entity resolution,” Proc. VLDB Endow., vol. 11, no. 11, pp. 1454–1467, 2018. [Online]. Available: http://www.vldb.org/pvldb/vol11/p1454-ebraheem.pdf
  42. A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling language modeling with pathways,” arXiv preprint arXiv:2204.02311, 2022.
  43. M. Agrawal, S. Hegselmann, H. Lang, Y. Kim, and D. Sontag, “Large language models are few-shot clinical information extractors,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 2022, pp. 1998–2022.
  44. M. Kayali, A. Lykov, I. Fountalis, N. Vasiloglou, D. Olteanu, and D. Suciu, “CHORUS: foundation models for unified data discovery and exploration,” CoRR, vol. abs/2306.09610, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2306.09610
  45. N. Guan, K. Chen, and N. Koudas, “Can large language models design accurate label functions?” CoRR, vol. abs/2311.00739, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2311.00739
  46. Y. Lee, C. Lim, and H. Choi, “Does GPT-3 generate empathetic dialogues? A novel in-context example selection method and automatic evaluation metric for empathetic dialogue generation,” in Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17, 2022.   International Committee on Computational Linguistics, 2022, pp. 669–683. [Online]. Available: https://aclanthology.org/2022.coling-1.56
  47. I. Levy, B. Bogin, and J. Berant, “Diverse demonstrations improve in-context compositional generalization,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023.   Association for Computational Linguistics, 2023, pp. 1401–1422. [Online]. Available: https://doi.org/10.18653/v1/2023.acl-long.78
  48. H. Su, J. Kasai, C. H. Wu, W. Shi, T. Wang, J. Xin, R. Zhang, M. Ostendorf, L. Zettlemoyer, N. A. Smith, and T. Yu, “Selective annotation makes language models better few-shot learners,” in The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.   OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?id=qY1hlv7gwg
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Meihao Fan (4 papers)
  2. Xiaoyue Han (1 paper)
  3. Ju Fan (26 papers)
  4. Chengliang Chai (9 papers)
  5. Nan Tang (63 papers)
  6. Guoliang Li (125 papers)
  7. Xiaoyong Du (40 papers)
Citations (4)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub