Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Robustness in Incremental Learning with Adversarial Training (2312.03289v3)

Published 6 Dec 2023 in cs.CV

Abstract: Adversarial training is one of the most effective approaches against adversarial attacks. However, adversarial training has primarily been studied in scenarios where data for all classes is provided, with limited research conducted in the context of incremental learning where knowledge is introduced sequentially. In this study, we investigate Adversarially Robust Class Incremental Learning (ARCIL), which deals with adversarial robustness in incremental learning. We first explore a series of baselines that integrate incremental learning with existing adversarial training methods, finding that they lead to conflicts between acquiring new knowledge and retaining past knowledge. Furthermore, we discover that training new knowledge causes the disappearance of a key characteristic in robust models: a flat loss landscape in input space. To address such issues, we propose a novel and robust baseline for ARCIL, named \textbf{FL}atness-preserving \textbf{A}dversarial \textbf{I}ncremental learning for \textbf{R}obustness (\textbf{FLAIR}). Experimental results demonstrate that FLAIR significantly outperforms other baselines. To the best of our knowledge, we are the first to comprehensively investigate the baselines, challenges, and solutions for ARCIL, which we believe represents a significant advance toward achieving real-world robustness. Codes are available at \url{https://github.com/HongsinLee/FLAIR}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.