Foundation Models for Weather and Climate Data Understanding: A Comprehensive Survey (2312.03014v1)
Abstract: As AI continues to rapidly evolve, the realm of Earth and atmospheric sciences is increasingly adopting data-driven models, powered by progressive developments in deep learning (DL). Specifically, DL techniques are extensively utilized to decode the chaotic and nonlinear aspects of Earth systems, and to address climate challenges via understanding weather and climate data. Cutting-edge performance on specific tasks within narrower spatio-temporal scales has been achieved recently through DL. The rise of large models, specifically LLMs, has enabled fine-tuning processes that yield remarkable outcomes across various downstream tasks, thereby propelling the advancement of general AI. However, we are still navigating the initial stages of crafting general AI for weather and climate. In this survey, we offer an exhaustive, timely overview of state-of-the-art AI methodologies specifically engineered for weather and climate data, with a special focus on time series and text data. Our primary coverage encompasses four critical aspects: types of weather and climate data, principal model architectures, model scopes and applications, and datasets for weather and climate. Furthermore, in relation to the creation and application of foundation models for weather and climate data understanding, we delve into the field's prevailing challenges, offer crucial insights, and propose detailed avenues for future research. This comprehensive approach equips practitioners with the requisite knowledge to make substantial progress in this domain. Our survey encapsulates the most recent breakthroughs in research on large, data-driven models for weather and climate data understanding, emphasizing robust foundations, current advancements, practical applications, crucial resources, and prospective research opportunities.
- P. S. Fabian, H.-H. Kwon, M. Vithanage, and J.-H. Lee, “Modeling, challenges, and strategies for understanding impacts of climate extremes (droughts and floods) on water quality in asia: A review,” Environmental Research, p. 115617, 2023.
- Y. Deng, X. Wang, T. Lu, H. Du, P. Ciais, and X. Lin, “Divergent seasonal responses of carbon fluxes to extreme droughts over china,” Agricultural and Forest Meteorology, vol. 328, p. 109253, 2023.
- Z. Zhou, Y. Chen, M. C. Yam, K. Ke, and X. He, “Experimental investigation of a high strength steel frame with curved knee braces subjected to extreme earthquakes,” Thin-Walled Structures, vol. 185, p. 110596, 2023.
- D. Barriopedro, R. García-Herrera, C. Ordóñez, D. Miralles, and S. Salcedo-Sanz, “Heat waves: Physical understanding and scientific challenges,” Reviews of Geophysics, p. e2022RG000780, 2023.
- J. Zeng, G. Han, S. Zhang, X. Xiao, Y. Li, X. Gao, D. Wang, and R. Qu, “Response of dissolved organic carbon in rainwater during extreme rainfall period in megacity: Status, potential source, and deposition flux,” Sustainable Cities and Society, vol. 88, p. 104299, 2023.
- M. P. Couldrey, J. M. Gregory, X. Dong, O. Garuba, H. Haak, A. Hu, W. J. Hurlin, J. Jin, J. Jungclaus, A. Köhl et al., “Greenhouse-gas forced changes in the atlantic meridional overturning circulation and related worldwide sea-level change,” Climate Dynamics, vol. 60, no. 7-8, pp. 2003–2039, 2023.
- A. Raihan, “A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors,” Journal of Environmental Science and Economics, vol. 2, no. 3, pp. 36–58, 2023.
- S. Materia, L. P. García, C. van Straaten, A. Mamalakis, L. Cavicchia, D. Coumou, P. De Luca, M. Kretschmer, M. G. Donat et al., “Artificial intelligence for prediction of climate extremes: State of the art, challenges and future perspectives,” arXiv preprint arXiv:2310.01944, 2023.
- J. R. Beddington, M. Asaduzzaman, A. Fernandez, M. E. Clark, M. Guillou, M. M. Jahn, L. Erda, T. Mamo, B. N. Van, C. A. Nobre et al., “Achieving food security in the face of climate change: Summary for policy makers from the commission on sustainable agriculture and climate change,” 2011.
- J. F. Kok, T. Storelvmo, V. A. Karydis, A. A. Adebiyi, N. M. Mahowald, A. T. Evan, C. He, and D. M. Leung, “Mineral dust aerosol impacts on global climate and climate change,” Nature Reviews Earth & Environment, vol. 4, no. 2, pp. 71–86, 2023.
- P. Loh, Y. Twumasi, Z. Ning, M. Anokye, J. Oppong, R. Armah, C. Apraku, and J. Namwamba, “Analyzing the impact of sea level rise on coastal flooding and shoreline changes along the coast of louisiana using remote sensory imagery,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 48, pp. 139–145, 2023.
- L. Yu, W. Sun, H. Zhang, N. Cong, Y. Chen, J. Hu, and X. Jing, “Grazing exclusion jeopardizes plant biodiversity effect but enhances dryness effect on multifunctionality in arid grasslands,” Available at SSRN 4575743.
- I. M. Voskamp and F. H. Van de Ven, “Planning support system for climate adaptation: Composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events,” Building and Environment, vol. 83, pp. 159–167, 2015.
- H. R. Maier and G. C. Dandy, “Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications,” Environmental modelling & software, vol. 15, no. 1, pp. 101–124, 2000.
- S. A. Markolf, C. Hoehne, A. Fraser, M. V. Chester, and B. S. Underwood, “Transportation resilience to climate change and extreme weather events–beyond risk and robustness,” Transport policy, vol. 74, pp. 174–186, 2019.
- M. J. Koetse and P. Rietveld, “The impact of climate change and weather on transport: An overview of empirical findings,” Transportation Research Part D: Transport and Environment, vol. 14, no. 3, pp. 205–221, 2009.
- K. Ravindra, P. Rattan, S. Mor, and A. N. Aggarwal, “Generalized additive models: Building evidence of air pollution, climate change and human health,” Environment international, vol. 132, p. 104987, 2019.
- P. Bauer, A. Thorpe, and G. Brunet, “The quiet revolution of numerical weather prediction,” Nature, vol. 525, no. 7567, pp. 47–55, 2015.
- R. Kimura, “Numerical weather prediction,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 90, no. 12-15, pp. 1403–1414, 2002.
- D. Maraun, F. Wetterhall, A. Ireson, R. Chandler, E. Kendon, M. Widmann, S. Brienen, H. Rust, T. Sauter, M. Themeßl et al., “Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user,” Reviews of geophysics, vol. 48, no. 3, 2010.
- S. Chen, G. Long, T. Shen, and J. Jiang, “Prompt federated learning for weather forecasting: Toward foundation models on meteorological data,” arXiv preprint arXiv:2301.09152, 2023.
- T. Nguyen, J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover, “Climax: A foundation model for weather and climate,” arXiv preprint arXiv:2301.10343, 2023.
- M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H. Leufen, A. Mozaffari, and S. Stadtler, “Can deep learning beat numerical weather prediction?” Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200097, 2021.
- J. Wei, J. Jiang, H. Liu, F. Zhang, P. Lin, P. Wang, Y. Yu, X. Chi, L. Zhao, M. Ding et al., “Licom3-cuda: A gpu version of lasg/iap climate system ocean model version 3 based on cuda,” The Journal of Supercomputing, pp. 1–31, 2023.
- A. F. Prein, N. Ban, T. Ou, J. Tang, K. Sakaguchi, E. Collier, S. Jayanarayanan, L. Li, S. Sobolowski, X. Chen et al., “Towards ensemble-based kilometer-scale climate simulations over the third pole region,” Climate Dynamics, vol. 60, no. 11-12, pp. 4055–4081, 2023.
- V. L. T. de Souza, B. A. D. Marques, H. C. Batagelo, and J. P. Gois, “A review on generative adversarial networks for image generation,” Computers & Graphics, 2023.
- J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar, “Integrating physics-based modeling with machine learning: A survey,” arXiv preprint arXiv:2003.04919, vol. 1, no. 1, pp. 1–34, 2020.
- X. Ren, X. Li, K. Ren, J. Song, Z. Xu, K. Deng, and X. Wang, “Deep learning-based weather prediction: a survey,” Big Data Research, vol. 23, p. 100178, 2021.
- L. Yuan, D. Chen, Y.-L. Chen, N. Codella, X. Dai, J. Gao, H. Hu, X. Huang, B. Li, C. Li et al., “Florence: A new foundation model for computer vision,” arXiv preprint arXiv:2111.11432, 2021.
- I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated robot task plans using large language models,” in 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023, pp. 11 523–11 530.
- S. Gilbert, H. Harvey, T. Melvin, E. Vollebregt, and P. Wicks, “Large language model ai chatbots require approval as medical devices,” Nature Medicine, pp. 1–3, 2023.
- A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F. Tan, and D. S. W. Ting, “Large language models in medicine,” Nature medicine, vol. 29, no. 8, pp. 1930–1940, 2023.
- S. Chen, S. Ren, G. Wang, M. Huang, and C. Xue, “Interpretable cnn-multilevel attention transformer for rapid recognition of pneumonia from chest x-ray images,” IEEE Journal of Biomedical and Health Informatics, 2023.
- K. Zhang and D. Liu, “Customized segment anything model for medical image segmentation,” arXiv preprint arXiv:2304.13785, 2023.
- J. Ma and B. Wang, “Segment anything in medical images,” arXiv preprint arXiv:2304.12306, 2023.
- H. Abburi, M. Suesserman, N. Pudota, B. Veeramani, E. Bowen, and S. Bhattacharya, “Generative ai text classification using ensemble llm approaches,” arXiv preprint arXiv:2309.07755, 2023.
- Y. Shi, H. Ma, W. Zhong, G. Mai, X. Li, T. Liu, and J. Huang, “Chatgraph: Interpretable text classification by converting chatgpt knowledge to graphs,” arXiv preprint arXiv:2305.03513, 2023.
- X. Sun, X. Li, J. Li, F. Wu, S. Guo, T. Zhang, and G. Wang, “Text classification via large language models,” arXiv preprint arXiv:2305.08377, 2023.
- T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 2014, pp. 740–755.
- A. Veit, T. Matera, L. Neumann, J. Matas, and S. Belongie, “Coco-text: Dataset and benchmark for text detection and recognition in natural images,” arXiv preprint arXiv:1601.07140, 2016.
- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.
- A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,” arXiv preprint arXiv:2304.02643, 2023.
- A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning. PMLR, 2021, pp. 8748–8763.
- L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and consequences,” Minds and Machines, vol. 30, pp. 681–694, 2020.
- T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
- A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.
- S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of artificial general intelligence: Early experiments with gpt-4,” arXiv preprint arXiv:2303.12712, 2023.
- D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “Minigpt-4: Enhancing vision-language understanding with advanced large language models,” arXiv preprint arXiv:2304.10592, 2023.
- Y. Gao, J. Liu, Z. Xu, J. Zhang, K. Li, R. Ji, and C. Shen, “Pyramidclip: Hierarchical feature alignment for vision-language model pretraining,” Advances in neural information processing systems, vol. 35, pp. 35 959–35 970, 2022.
- P. Zhang, X. Li, X. Hu, J. Yang, L. Zhang, L. Wang, Y. Choi, and J. Gao, “Vinvl: Revisiting visual representations in vision-language models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 5579–5588.
- Z. Wang, Y. Lu, Q. Li, X. Tao, Y. Guo, M. Gong, and T. Liu, “Cris: Clip-driven referring image segmentation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 11 686–11 695.
- K. Park, S. Woo, S. W. Oh, I. S. Kweon, and J.-Y. Lee, “Per-clip video object segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1352–1361.
- F. Liang, B. Wu, X. Dai, K. Li, Y. Zhao, H. Zhang, P. Zhang, P. Vajda, and D. Marculescu, “Open-vocabulary semantic segmentation with mask-adapted clip,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 7061–7070.
- M. Tang, Z. Wang, Z. Liu, F. Rao, D. Li, and X. Li, “Clip4caption: Clip for video caption,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 4858–4862.
- Z. Zhang, Y. Chen, Z. Ma, Z. Qi, C. Yuan, B. Li, Y. Shan, and W. Hu, “Create: A benchmark for chinese short video retrieval and title generation,” arXiv preprint arXiv:2203.16763, 2022.
- S. Ling, Y. Hu, S. Qian, G. Ye, Y. Qian, Y. Gong, E. Lin, and M. Zeng, “Adapting large language model with speech for fully formatted end-to-end speech recognition,” arXiv preprint arXiv:2307.08234, 2023.
- Y. Zhang, W. Han, J. Qin, Y. Wang, A. Bapna, Z. Chen, N. Chen, B. Li, V. Axelrod, G. Wang et al., “Google usm: Scaling automatic speech recognition beyond 100 languages,” arXiv preprint arXiv:2303.01037, 2023.
- J. Holmes, Z. Liu, L. Zhang, Y. Ding, T. T. Sio, L. A. McGee, J. B. Ashman, X. Li, T. Liu, J. Shen et al., “Evaluating large language models on a highly-specialized topic, radiation oncology physics,” arXiv preprint arXiv:2304.01938, 2023.
- N. Matzakos, S. Doukakis, and M. Moundridou, “Learning mathematics with large language models: A comparative study with computer algebra systems and other tools.” International Journal of Emerging Technologies in Learning, vol. 18, no. 20, 2023.
- K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate medium-range global weather forecasting with 3d neural networks,” Nature, vol. 619, no. 7970, pp. 533–538, 2023.
- X. Man, C. Zhang, C. Li, and J. Shao, “W-mae: Pre-trained weather model with masked autoencoder for multi-variable weather forecasting,” arXiv preprint arXiv:2304.08754, 2023.
- Y. Liu, K. Duffy, J. G. Dy, and A. R. Ganguly, “Explainable deep learning for insights in el niño and river flows,” Nature Communications, vol. 14, no. 1, p. 339, 2023.
- H. Wang, S. Hu, and X. Li, “An interpretable deep learning enso forecasting model,” Ocean-Land-Atmosphere Research, vol. 2, p. 0012, 2023.
- W. Fang, Q. Xue, L. Shen, and V. S. Sheng, “Survey on the application of deep learning in extreme weather prediction,” Atmosphere, vol. 12, no. 6, p. 661, 2021.
- B. Bochenek and Z. Ustrnul, “Machine learning in weather prediction and climate analyses—applications and perspectives,” Atmosphere, vol. 13, no. 2, p. 180, 2022.
- K. Jaseena and B. C. Kovoor, “Deterministic weather forecasting models based on intelligent predictors: A survey,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 6, pp. 3393–3412, 2022.
- L. Chen, B. Han, X. Wang, J. Zhao, W. Yang, and Z. Yang, “Machine learning methods in weather and climate applications: A survey,” Applied Sciences, vol. 13, no. 21, p. 12019, 2023.
- A. Jones, J. Kuehnert, P. Fraccaro, O. Meuriot, T. Ishikawa, B. Edwards, N. Stoyanov, S. L. Remy, K. Weldemariam, and S. Assefa, “Ai for climate impacts: applications in flood risk,” npj Climate and Atmospheric Science, vol. 6, no. 1, p. 63, 2023.
- M. J. Molina, T. A. O’Brien, G. Anderson, M. Ashfaq, K. E. Bennett, W. D. Collins, K. Dagon, J. M. Restrepo, and P. A. Ullrich, “A review of recent and emerging machine learning applications for climate variability and weather phenomena,” Artificial Intelligence for the Earth Systems, pp. 1–46, 2023.
- S. K. Mukkavilli, D. S. Civitarese, J. Schmude, J. Jakubik, A. Jones, N. Nguyen, C. Phillips, S. Roy, S. Singh, C. Watson et al., “Ai foundation models for weather and climate: Applications, design, and implementation,” arXiv preprint arXiv:2309.10808, 2023.
- V. Jacques-Dumas, F. Ragone, P. Borgnat, P. Abry, and F. Bouchet, “Deep learning-based extreme heatwave forecast,” Frontiers in Climate, vol. 4, 2022.
- S. Lee and S. Nirjon, “Learning in the wild: When, how, and what to learn for on-device dataset adaptation,” in Proceedings of the 2nd International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things, 2020, pp. 34–40.
- K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Conditional prompt learning for vision-language models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16 816–16 825.
- M. Maaz, H. Rasheed, S. Khan, and F. S. Khan, “Video-chatgpt: Towards detailed video understanding via large vision and language models,” arXiv preprint arXiv:2306.05424, 2023.
- W. Dai, J. Li, D. Li, A. M. H. Tiong, J. Zhao, W. Wang, B. Li, P. Fung, and S. Hoi, “Instructblip: Towards general-purpose vision-language models with instruction tuning,” 2023.
- J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu, “Coca: Contrastive captioners are image-text foundation models,” arXiv preprint arXiv:2205.01917, 2022.
- W. Wang, H. Bao, L. Dong, J. Bjorck, Z. Peng, Q. Liu, K. Aggarwal, O. K. Mohammed, S. Singhal, S. Som, and F. Wei, “Image as a foreign language: Beit pretraining for all vision and vision-language tasks,” 2022.
- L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe, “Training language models to follow instructions with human feedback,” 2022.
- H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971, 2023.
- H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,” 2023.
- S. Chen, T. Shu, H. Zhao, Q. Wan, J. Huang, and C. Li, “Dynamic multiscale fusion generative adversarial network for radar image extrapolation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–11, 2022.
- H. Wu, Z. Yao, J. Wang, and M. Long, “Motionrnn: A flexible model for video prediction with spacetime-varying motions,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 15 435–15 444.
- M. Veillette, S. Samsi, and C. Mattioli, “Sevir: A storm event imagery dataset for deep learning applications in radar and satellite meteorology,” Advances in Neural Information Processing Systems, vol. 33, pp. 22 009–22 019, 2020.
- X. Zhu, Y. Xiong, M. Wu, G. Nie, B. Zhang, and Z. Yang, “Weather2k: A multivariate spatio-temporal benchmark dataset for meteorological forecasting based on real-time observation data from ground weather stations,” arXiv preprint arXiv:2302.10493, 2023.
- S. Rasp, P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. Thuerey, “Weatherbench: a benchmark data set for data-driven weather forecasting,” Journal of Advances in Modeling Earth Systems, vol. 12, no. 11, p. e2020MS002203, 2020.
- S. Rasp, S. Hoyer, A. Merose, I. Langmore, P. Battaglia, T. Russel, A. Sanchez-Gonzalez, V. Yang, R. Carver, S. Agrawal et al., “Weatherbench 2: A benchmark for the next generation of data-driven global weather models,” arXiv preprint arXiv:2308.15560, 2023.
- T. Nguyen, J. Jewik, H. Bansal, P. Sharma, and A. Grover, “Climatelearn: Benchmarking machine learning for weather and climate modeling,” arXiv preprint arXiv:2307.01909, 2023.
- J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in large language models,” 2023.
- S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large language models,” 2023.
- M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, L. Gianinazzi, J. Gajda, T. Lehmann, M. Podstawski, H. Niewiadomski, P. Nyczyk, and T. Hoefler, “Graph of thoughts: Solving elaborate problems with large language models,” 2023.
- G. P. Zhang, “Time series forecasting using a hybrid arima and neural network model,” Neurocomputing, vol. 50, pp. 159–175, 2003.
- P. Chen, A. Niu, D. Liu, W. Jiang, and B. Ma, “Time series forecasting of temperatures using sarima: An example from nanjing,” in IOP Conference Series: Materials Science and Engineering, vol. 394. IOP Publishing, 2018, p. 052024.
- Y. Chen and S. Tjandra, “Daily collision prediction with sarimax and generalized linear models on the basis of temporal and weather variables,” Transportation Research Record, vol. 2432, no. 1, pp. 26–36, 2014.
- X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convolutional lstm network: A machine learning approach for precipitation nowcasting,” Advances in neural information processing systems, vol. 28, 2015.
- M. Hüsken and P. Stagge, “Recurrent neural networks for time series classification,” Neurocomputing, vol. 50, pp. 223–235, 2003.
- S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
- H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 12, 2021, pp. 11 106–11 115.
- M. Chen, H. Peng, J. Fu, and H. Ling, “Autoformer: Searching transformers for visual recognition,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 12 270–12 280.
- Y. Zhang and J. Yan, “Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting,” in The Eleventh International Conference on Learning Representations, 2022.
- G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. Hoi, “Etsformer: Exponential smoothing transformers for time-series forecasting,” arXiv preprint arXiv:2202.01381, 2022.
- N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The efficient transformer,” arXiv preprint arXiv:2001.04451, 2020.
- T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting,” in International Conference on Machine Learning. PMLR, 2022, pp. 27 268–27 286.
- B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting,” arXiv preprint arXiv:1709.04875, 2017.
- S. Chen, T. Shu, H. Zhao, G. Zhong, and X. Chen, “Tempee: Temporal–spatial parallel transformer for radar echo extrapolation beyond autoregression,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–14, 2023. [Online]. Available: https://doi.org/10.1109%2Ftgrs.2023.3311510
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
- P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in neural information processing systems, vol. 34, pp. 8780–8794, 2021.
- M. Jin, Q. Wen, Y. Liang, C. Zhang, S. Xue, X. Wang, J. Zhang, Y. Wang, H. Chen, X. Li et al., “Large models for time series and spatio-temporal data: A survey and outlook,” arXiv preprint arXiv:2310.10196, 2023.
- L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and Applications, vol. 5, no. 64-67, p. 2, 2001.
- W. De Mulder, S. Bethard, and M.-F. Moens, “A survey on the application of recurrent neural networks to statistical language modeling,” Computer Speech & Language, vol. 30, no. 1, pp. 61–98, 2015.
- T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khudanpur, “Extensions of recurrent neural network language model,” in 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2011, pp. 5528–5531.
- T. Mikolov and G. Zweig, “Context dependent recurrent neural network language model,” in 2012 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2012, pp. 234–239.
- H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent neural networks for time series forecasting: Current status and future directions,” International Journal of Forecasting, vol. 37, no. 1, pp. 388–427, 2021.
- A. Lazcano, P. J. Herrera, and M. Monge, “A combined model based on recurrent neural networks and graph convolutional networks for financial time series forecasting,” Mathematics, vol. 11, no. 1, p. 224, 2023.
- J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.
- J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
- J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv preprint arXiv:2010.02502, 2020.
- C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and M. Norouzi, “Palette: Image-to-image diffusion models,” in ACM SIGGRAPH 2022 Conference Proceedings, 2022, pp. 1–10.
- R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.
- F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion models in vision: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
- A. Hertz, R. Mokady, J. Tenenbaum, K. Aberman, Y. Pritch, and D. Cohen-Or, “Prompt-to-prompt image editing with cross attention control,” arXiv preprint arXiv:2208.01626, 2022.
- A. Blattmann, R. Rombach, K. Oktay, J. Müller, and B. Ommer, “Retrieval-augmented diffusion models,” Advances in Neural Information Processing Systems, vol. 35, pp. 15 309–15 324, 2022.
- Y. Li, K. Zhou, W. X. Zhao, and J.-R. Wen, “Diffusion models for non-autoregressive text generation: A survey,” arXiv preprint arXiv:2303.06574, 2023.
- Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun, “Transformers in time series: A survey,” arXiv preprint arXiv:2202.07125, 2022.
- K. S. Kalyan, A. Rajasekharan, and S. Sangeetha, “Ammus: A survey of transformer-based pretrained models in natural language processing,” arXiv preprint arXiv:2108.05542, 2021.
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
- T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He, “Attngan: Fine-grained text to image generation with attentional generative adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 1316–1324.
- Y. Zhang, Y. Wang, Z. Jiang, F. Liao, L. Zheng, D. Tan, J. Chen, and J. Lu, “Diversifying tire-defect image generation based on generative adversarial network,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–12, 2022.
- J. He, W. Shi, K. Chen, L. Fu, and C. Dong, “Gcfsr: a generative and controllable face super resolution method without facial and gan priors,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1889–1898.
- J. Park, S. Son, and K. M. Lee, “Content-aware local gan for photo-realistic super-resolution,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 10 585–10 594.
- Z. Zheng, J. Liu, and N. Zheng, “p2superscript𝑝2p^{2}italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-gan: Efficient stroke style transfer using single style image,” IEEE Transactions on Multimedia, 2022.
- S. M. Bafti, C. S. Ang, G. Marcelli, M. M. Hossain, S. Maxamhud, and A. D. Tsaousis, “Biogan: An unpaired gan-based image to image translation model for microbiological images,” arXiv preprint arXiv:2306.06217, 2023.
- X. Cheng, J. Zhou, J. Song, and X. Zhao, “A highway traffic image enhancement algorithm based on improved gan in complex weather conditions,” IEEE Transactions on Intelligent Transportation Systems, 2023.
- J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli et al., “Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators,” arXiv preprint arXiv:2202.11214, 2022.
- R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, A. Pritzel, S. Ravuri, T. Ewalds, F. Alet, Z. Eaton-Rosen et al., “Graphcast: Learning skillful medium-range global weather forecasting,” arXiv preprint arXiv:2212.12794, 2022.
- K. Chen, T. Han, J. Gong, L. Bai, F. Ling, J.-J. Luo, X. Chen, L. Ma, T. Zhang, R. Su, Y. Ci, B. Li, X. Yang, and W. Ouyang, “Fengwu: Pushing the skillful global medium-range weather forecast beyond 10 days lead,” 2023.
- L. Chen, X. Zhong, F. Zhang, Y. Cheng, Y. Xu, Y. Qi, and H. Li, “Fuxi: A cascade machine learning forecasting system for 15-day global weather forecast,” arXiv preprint arXiv:2306.12873, 2023.
- S. R. Cachay, E. Erickson, A. F. C. Bucker, E. Pokropek, W. Potosnak, S. Bire, S. Osei, and B. Lütjens, “The world as a graph: Improving el niño forecasts with graph neural networks,” 2021.
- Q. You, Z. Cai, F. Wu, Z. Jiang, N. Pepin, and S. S. Shen, “Temperature dataset of cmip6 models over china: evaluation, trend and uncertainty,” Climate Dynamics, vol. 57, pp. 17–35, 2021.
- R. Keisler, “Forecasting global weather with graph neural networks,” 2022.
- Q. Ni, Y. Wang, and Y. Fang, “Ge-stdgn: a novel spatio-temporal weather prediction model based on graph evolution,” Applied Intelligence, pp. 1–15, 2022.
- M. Ma, P. Xie, F. Teng, B. Wang, S. Ji, J. Zhang, and T. Li, “Histgnn: Hierarchical spatio-temporal graph neural network for weather forecasting,” Information Sciences, vol. 648, p. 119580, 2023.
- K. Venkatachalam, P. Trojovskỳ, D. Pamucar, N. Bacanin, and V. Simic, “Dwfh: An improved data-driven deep weather forecasting hybrid model using transductive long short term memory (t-lstm),” Expert Systems with Applications, vol. 213, p. 119270, 2023.
- L. Chen, F. Du, Y. Hu, Z. Wang, and F. Wang, “Swinrdm: integrate swinrnn with diffusion model towards high-resolution and high-quality weather forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 1, 2023, pp. 322–330.
- Y. Hu, L. Chen, Z. Wang, and H. Li, “Swinvrnn: A data-driven ensemble forecasting model via learned distribution perturbation,” Journal of Advances in Modeling Earth Systems, vol. 15, no. 2, p. e2022MS003211, 2023.
- Z. Ben-Bouallegue, J. A. Weyn, M. C. Clare, J. Dramsch, P. Dueben, and M. Chantry, “Improving medium-range ensemble weather forecasts with hierarchical ensemble transformers,” arXiv preprint arXiv:2303.17195, 2023.
- S. Bire, B. Lütjens, D. Newman, and C. Hill, “Oceanfourcast: Emulating ocean models with transformers for adjoint-based data assimilation,” Copernicus Meetings, Tech. Rep., 2023.
- L. Li, R. Carver, I. Lopez-Gomez, F. Sha, and J. Anderson, “Seeds: Emulation of weather forecast ensembles with diffusion models,” arXiv preprint arXiv:2306.14066, 2023.
- S. R. Cachay, B. Zhao, H. James, and R. Yu, “Dyffusion: A dynamics-informed diffusion model for spatiotemporal forecasting,” arXiv preprint arXiv:2306.01984, 2023.
- O. Ovadia, E. Turkel, A. Kahana, and G. E. Karniadakis, “Ditto: Diffusion-inspired temporal transformer operator,” arXiv preprint arXiv:2307.09072, 2023.
- I. Prapas, N.-I. Bountos, S. Kondylatos, D. Michail, G. Camps-Valls, and I. Papoutsis, “Televit: Teleconnection-driven transformers improve subseasonal to seasonal wildfire forecasting,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 3754–3759.
- S. Chen, G. Long, T. Shen, T. Zhou, and J. Jiang, “Spatial-temporal prompt learning for federated weather forecasting,” arXiv preprint arXiv:2305.14244, 2023.
- X. Zhong, L. Chen, J. Liu, C. Lin, Y. Qi, and H. Li, “Fuxi-extreme: Improving extreme rainfall and wind forecasts with diffusion model,” 2023.
- S. Esmaeilzadeh, K. Azizzadenesheli, K. Kashinath, M. Mustafa, H. A. Tchelepi, P. Marcus, M. Prabhat, A. Anandkumar et al., “Meshfreeflownet: A physics-constrained deep continuous space-time super-resolution framework,” in SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020, pp. 1–15.
- M. A. E. R. Hammoud, E. S. Titi, I. Hoteit, and O. Knio, “Cdanet: A physics-informed deep neural network for downscaling fluid flows,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 12, p. e2022MS003051, 2022.
- P. Harder, Q. Yang, V. Ramesh, P. Sattigeri, A. Hernandez-Garcia, C. Watson, D. Szwarcman, and D. Rolnick, “Generating physically-consistent high-resolution climate data with hard-constrained neural networks,” arXiv preprint arXiv:2208.05424, 2022.
- F. Gerges, M. C. Boufadel, E. Bou-Zeid, H. Nassif, and J. T. Wang, “A novel bayesian deep learning approach to the downscaling of wind speed with uncertainty quantification,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2022, pp. 55–66.
- J. Baño-Medina, R. Manzanas, E. Cimadevilla, J. Fernández, J. González-Abad, A. S. Cofiño, and J. M. Gutiérrez, “Downscaling multi-model climate projection ensembles with deep learning (deepesd): contribution to cordex eur-44,” Geoscientific Model Development, vol. 15, no. 17, pp. 6747–6758, 2022.
- J. González-Abad, Álex Hernández-García, P. Harder, D. Rolnick, and J. M. Gutiérrez, “Multi-variable hard physical constraints for climate model downscaling,” 2023.
- P. Harder, V. Ramesh, A. Hernandez-Garcia, Q. Yang, P. Sattigeri, D. Szwarcman, C. Watson, and D. Rolnick, “Physics-constrained deep learning for downscaling,” Copernicus Meetings, Tech. Rep., 2023.
- D. Fuchs, S. C. Sherwood, A. Prasad, K. Trapeznikov, and J. Gimlett, “Torchclim v1. 0: A deep-learning framework for climate model physics,” EGUsphere, vol. 2023, pp. 1–25, 2023.
- M. Mardani, N. Brenowitz, Y. Cohen, J. Pathak, C.-Y. Chen, C.-C. Liu, A. Vahdat, K. Kashinath, J. Kautz, and M. Pritchard, “Generative residual diffusion modeling for km-scale atmospheric downscaling,” 2023.
- C. K. Sønderby, L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, S. Agrawal, J. Hickey, and N. Kalchbrenner, “Metnet: A neural weather model for precipitation forecasting,” arXiv preprint arXiv:2003.12140, 2020.
- J. Park, I. Lee, M. Son, S. Cho, and C. Kim, “Nowformer: A locally enhanced temporal learner for precipitation nowcasting.”
- H.-B. Liu and I. Lee, “Mpl-gan: Toward realistic meteorological predictive learning using conditional gan,” IEEE Access, vol. 8, pp. 93 179–93 186, 2020.
- X. Peng, Q. Li, and J. Jing, “Cngat: A graph neural network model for radar quantitative precipitation estimation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
- A. Asperti, F. Merizzi, A. Paparella, G. Pedrazzi, M. Angelinelli, and S. Colamonaco, “Precipitation nowcasting with generative diffusion models,” 2023.
- J. Choi, Y. Kim, K.-H. Kim, S.-H. Jung, and I. Cho, “Pct-cyclegan: Paired complementary temporal cycle-consistent adversarial networks for radar-based precipitation nowcasting,” in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 348–358.
- C. Bai, F. Sun, J. Zhang, Y. Song, and S. Chen, “Rainformer: Features extraction balanced network for radar-based precipitation nowcasting,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
- Z. Gao, X. Shi, H. Wang, Y. Zhu, Y. B. Wang, M. Li, and D.-Y. Yeung, “Earthformer: Exploring space-time transformers for earth system forecasting,” Advances in Neural Information Processing Systems, vol. 35, pp. 25 390–25 403, 2022.
- Z. Yang, X. Yang, and Q. Lin, “Ptct: Patches with 3d-temporal convolutional transformer network for precipitation nowcasting,” arXiv preprint arXiv:2112.01085, 2021.
- Z. Ma, H. Zhang, and J. Liu, “Mm-rnn: A multimodal rnn for precipitation nowcasting,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
- Q. Jin, X. Zhang, X. Xiao, G. Meng, S. Xiang, C. Pan et al., “Spatiotemporal inference network for precipitation nowcasting with multi-modal fusion,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023.
- Q. Jin, X. Zhang, X. Xiao, Y. Wang, S. Xiang, and C. Pan, “Preformer: Simple and efficient design for precipitation nowcasting with transformers,” IEEE Geoscience and Remote Sensing Letters, 2023.
- Z. Gao, X. Shi, B. Han, H. Wang, X. Jin, D. Maddix, Y. Zhu, M. Li, and Y. Wang, “Prediff: Precipitation nowcasting with latent diffusion models,” arXiv preprint arXiv:2307.10422, 2023.
- F. Ye, J. Hu, T.-Q. Huang, L.-J. You, B. Weng, and J.-Y. Gao, “Transformer for ei niño-southern oscillation prediction,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.
- Y.-G. Ham, J.-H. Kim, E.-S. Kim, and K.-W. On, “Unified deep learning model for el niño/southern oscillation forecasts by incorporating seasonality in climate data,” Science Bulletin, vol. 66, no. 13, pp. 1358–1366, 2021.
- A. M. Ahmed, R. C. Deo, Q. Feng, A. Ghahramani, N. Raj, Z. Yin, and L. Yang, “Hybrid deep learning method for a week-ahead evapotranspiration forecasting,” Stochastic Environmental Research and Risk Assessment, pp. 1–19, 2021.
- B. Mu, B. Qin, and S. Yuan, “Enso-gtc: Enso deep learning forecast model with a global spatial-temporal teleconnection coupler,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 12, p. e2022MS003132, 2022.
- D. Xu, Q. Zhang, Y. Ding, and D. Zhang, “Application of a hybrid arima-lstm model based on the spei for drought forecasting,” Environmental Science and Pollution Research, vol. 29, no. 3, pp. 4128–4144, 2022.
- L. Wang, S. Ammons, V. M. Hur, R. L. Sriver, and Z. Zhao, “Convolutional gru network for seasonal prediction of the el ni\\\backslash\~ no-southern oscillation,” arXiv preprint arXiv:2306.10443, 2023.
- H. Li, N. Zhang, Z. Xu, X. Li, C. Liu, C. Zhao, and J. Wu, “Dk-stn: A domain knowledge embedded spatio-temporal network model for mjo forecast,” Expert Systems With Applications, Forthcoming, 2023.
- L. Han, M. Chen, K. Chen, H. Chen, Y. Zhang, B. Lu, L. Song, and R. Qin, “A deep learning method for bias correction of ecmwf 24–240 h forecasts,” Advances in Atmospheric Sciences, vol. 38, no. 9, pp. 1444–1459, 2021.
- T. Yoshikane and K. Yoshimura, “A bias correction method for precipitation through recognizing mesoscale precipitation systems corresponding to weather conditions,” PLoS Water, vol. 1, no. 5, p. e0000016, 2022.
- Y. Li, F. Tang, X. Gao, T. Zhang, J. Qi, J. Xie, X. Li, and Y. Guo, “Numerical weather prediction correction strategy for short-term wind power forecasting based on bidirectional gated recurrent unit and xgboost,” Frontiers in Energy Research, vol. 9, p. 836144, 2022.
- X. Yang, S. Yang, M. L. Tan, H. Pan, H. Zhang, G. Wang, R. He, and Z. Wang, “Correcting the bias of daily satellite precipitation estimates in tropical regions using deep neural network,” Journal of Hydrology, vol. 608, p. 127656, 2022.
- A. Blanchard, N. Parashar, B. Dodov, C. Lessig, and T. Sapsis, “A multi-scale deep learning framework for projecting weather extremes,” 2022.
- Y. Han, L. Mi, L. Shen, C. Cai, Y. Liu, K. Li, and G. Xu, “A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting,” Applied Energy, vol. 312, p. 118777, 2022.
- F. Wang and D. Tian, “On deep learning-based bias correction and downscaling of multiple climate models simulations,” Climate dynamics, vol. 59, no. 11-12, pp. 3451–3468, 2022.
- T. Ge, J. Pathak, A. Subramaniam, and K. Kashinath, “Dl-corrector-remapper: A grid-free bias-correction deep learning methodology for data-driven high-resolution global weather forecasting,” arXiv preprint arXiv:2210.12293, 2022.
- D. J. Fulton, B. J. Clarke, and G. C. Hegerl, “Bias correcting climate model simulations using unpaired image-to-image translation networks,” Artificial Intelligence for the Earth Systems, vol. 2, no. 2, p. e220031, 2023.
- B. Wu, W. Chen, W. Wang, B. Peng, L. Sun, and L. Chen, “Weathergnn: Exploiting complicated relationships in numerical weather prediction bias correction,” 2023.
- N. Webersinke, M. Kraus, J. A. Bingler, and M. Leippold, “Climatebert: A pretrained language model for climate-related text,” 2022.
- B. J. Fard, S. A. Hasan, and J. E. Bell, “Climedbert: A pre-trained language model for climate and health-related text,” 2022.
- Z. Bi, N. Zhang, Y. Xue, Y. Ou, D. Ji, G. Zheng, and H. Chen, “Oceangpt: A large language model for ocean science tasks,” 2023.
- T. Schimanski, J. Bingler, C. Hyslop, M. Kraus, and M. Leippold, “Climatebert-netzero: Detecting and assessing net zero and reduction targets,” 2023.
- E. C. Garrido-Merchán, C. González-Barthe, and M. C. Vaca, “Fine-tuning climatebert transformer with climatext for the disclosure analysis of climate-related financial risks,” 2023.
- K. Chen, Y. Meng, X. Sun, S. Guo, T. Zhang, J. Li, and C. Fan, “Badpre: Task-agnostic backdoor attacks to pre-trained nlp foundation models,” arXiv preprint arXiv:2110.02467, 2021.
- J. Guibas, M. Mardani, Z. Li, A. Tao, A. Anandkumar, and B. Catanzaro, “Adaptive fourier neural operators: Efficient token mixers for transformers,” arXiv preprint arXiv:2111.13587, 2021.
- K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision learners,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 16 000–16 009.
- C. Feichtenhofer, Y. Li, K. He et al., “Masked autoencoders as spatiotemporal learners,” Advances in neural information processing systems, vol. 35, pp. 35 946–35 958, 2022.
- B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–1282.
- F. S. Varini, J. Boyd-Graber, M. Ciaramita, and M. Leippold, “Climatext: A dataset for climate change topic detection,” 2021.
- C.-A. Diaconu, S. Saha, S. Günnemann, and X. X. Zhu, “Understanding the role of weather data for earth surface forecasting using a convlstm-based model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1362–1371.
- S. F. Tekin, O. Karaahmetoglu, F. Ilhan, I. Balaban, and S. S. Kozat, “Spatio-temporal weather forecasting and attention mechanism on convolutional lstms,” arXiv preprint arXiv:2102.00696, 2021.
- J. Su, W. Byeon, J. Kossaifi, F. Huang, J. Kautz, and A. Anandkumar, “Convolutional tensor-train lstm for spatio-temporal learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 13 714–13 726, 2020.
- Y. Wang, H. Wu, J. Zhang, Z. Gao, J. Wang, S. Y. Philip, and M. Long, “Predrnn: A recurrent neural network for spatiotemporal predictive learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 2, pp. 2208–2225, 2022.
- Y. Wang, L. Jiang, M.-H. Yang, L.-J. Li, M. Long, and L. Fei-Fei, “Eidetic 3d lstm: A model for video prediction and beyond,” in International conference on learning representations, 2018.
- C. Luo, X. Zhao, Y. Sun, X. Li, and Y. Ye, “Predrann: the spatiotemporal attention convolution recurrent neural network for precipitation nowcasting,” Knowledge-Based Systems, vol. 239, p. 107900, 2022.
- M. Bilgili, A. Ilhan, and Ş. Ünal, “Time-series prediction of hourly atmospheric pressure using anfis and lstm approaches,” Neural Computing and Applications, vol. 34, no. 18, pp. 15 633–15 648, 2022.
- B. Usharani, “Ilf-lstm: Enhanced loss function in lstm to predict the sea surface temperature,” Soft Computing, vol. 27, no. 18, pp. 13 129–13 141, 2023.
- S. Tang, C. Li, P. Zhang, and R. Tang, “Swinlstm: Improving spatiotemporal prediction accuracy using swin transformer and lstm,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp. 13 470–13 479.
- L. Zhifeng, D. Feng, L. Jianyong, Z. Yue, and C. Hetao, “Comparison of blstm-attention and blstm-transformer models for wind speed prediction,” in Proceedings of the Bulgarian Academy of Sciences, vol. 75, no. 1, 2022, pp. 80–89.
- L. Tian, X. Li, Y. Ye, P. Xie, and Y. Li, “A generative adversarial gated recurrent unit model for precipitation nowcasting,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 4, pp. 601–605, 2019.
- J. Leinonen, D. Nerini, and A. Berne, “Stochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 9, pp. 7211–7223, 2020.
- Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 10 012–10 022.
- V. Zantedeschi, D. De Martini, C. Tong, C. S. de Witt, A. Kalaitzis, M. Chantry, and D. Watson-Parris, “Towards data-driven physics-informed global precipitation forecasting from satellite imagery,” in Proceedings of the AI for Earth Sciences Workshop at NeurIPS, 2020.
- J. Leinonen, U. Hamann, D. Nerini, U. Germann, and G. Franch, “Latent diffusion models for generative precipitation nowcasting with accurate uncertainty quantification,” arXiv preprint arXiv:2304.12891, 2023.
- S. R. Cachay, V. Ramesh, J. N. Cole, H. Barker, and D. Rolnick, “Climart: A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models,” arXiv preprint arXiv:2111.14671, 2021.
- P. Lippe, B. S. Veeling, P. Perdikaris, R. E. Turner, and J. Brandstetter, “Pde-refiner: Achieving accurate long rollouts with neural pde solvers,” arXiv preprint arXiv:2308.05732, 2023.
- Y. Hatanaka, Y. Glaser, G. Galgon, G. Torri, and P. Sadowski, “Diffusion models for high-resolution solar forecasts,” arXiv preprint arXiv:2302.00170, 2023.
- G. P. Høivang, “Diffmet: Diffusion models and deep learning for precipitation nowcasting,” Master’s thesis, 2023.
- A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.
- A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity natural image synthesis,” in International Conference on Learning Representations, 2018.
- T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved quality, stability, and variation,” in International Conference on Learning Representations, 2018.
- A. Bihlo, “A generative adversarial network approach to (ensemble) weather prediction,” Neural Networks, vol. 139, pp. 1–16, 2021.
- R. Gupta, M. Mustafa, and K. Kashinath, “Climate-style gan: Modeling turbulent climate dynamics using style-gan,” in AI for Earth Science Workshop, 2020.
- K. Klemmer, S. Saha, M. Kahl, T. Xu, and X. X. Zhu, “Generative modeling of spatio-temporal weather patterns with extreme event conditioning,” arXiv preprint arXiv:2104.12469, 2021.
- S. Ravuri, K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsimons, M. Athanassiadou, S. Kashem, S. Madge et al., “Skilful precipitation nowcasting using deep generative models of radar,” Nature, vol. 597, no. 7878, pp. 672–677, 2021.
- K. Klemmer, T. Xu, B. Acciaio, and D. B. Neill, “Spate-gan: Improved generative modeling of dynamic spatio-temporal patterns with an autoregressive embedding loss,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 4, 2022, pp. 4523–4531.
- Y. Ji, B. Gong, M. Langguth, A. Mozaffari, and X. Zhi, “Clgan: a generative adversarial network (gan)-based video prediction model for precipitation nowcasting,” Geoscientific Model Development, vol. 16, no. 10, pp. 2737–2752, 2023.
- C. Luo, X. Li, Y. Ye, S. Feng, and M. K. Ng, “Experimental study on generative adversarial network for precipitation nowcasting,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–20, 2022.
- R. Wang, L. Su, W. K. Wong, A. K. Lau, and J. C. Fung, “Skillful radar-based heavy rainfall nowcasting using task-segmented generative adversarial network,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
- L. Harris, A. T. McRae, M. Chantry, P. D. Dueben, and T. N. Palmer, “A generative deep learning approach to stochastic downscaling of precipitation forecasts,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 10, p. e2022MS003120, 2022.
- N. J. Annau, A. J. Cannon, and A. H. Monahan, “Algorithmic hallucinations of near-surface winds: Statistical downscaling with generative adversarial networks to convection-permitting scales,” Artificial Intelligence for the Earth Systems, 2023.
- K. Dai, X. Li, Y. Ye, S. Feng, D. Qin, and R. Ye, “Mstcgan: Multiscale time conditional generative adversarial network for long-term satellite image sequence prediction,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2022.
- Y. Kim and S. Hong, “Very short-term rainfall prediction using ground radar observations and conditional generative adversarial networks,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–8, 2021.
- P. Hess, M. Drüke, S. Petri, F. M. Strnad, and N. Boers, “Physically constrained generative adversarial networks for improving precipitation fields from earth system models,” Nature Machine Intelligence, vol. 4, no. 10, pp. 828–839, 2022.
- C. Besombes, O. Pannekoucke, C. Lapeyre, B. Sanderson, and O. Thual, “Producing realistic climate data with generative adversarial networks,” Nonlinear Processes in Geophysics, vol. 28, no. 3, pp. 347–370, 2021.
- E. Balogun, R. Buechler, R. Rajagopal, and A. Majumdar, “Temperaturegan: Generative modeling of regional atmospheric temperatures,” 2023.
- J. Sleeman, D. Chung, A. Gnanadesikan, J. Brett, Y. Kevrekidis, M. Hughes, T. Haine, M.-A. Pradal, R. Gelderloos, C. Ashcraft, C. Tang, A. Saksena, and L. White, “A generative adversarial network for climate tipping point discovery (tip-gan),” 2023.
- Y. Meng, E. Rigall, X. Chen, F. Gao, J. Dong, and S. Chen, “Physics-guided generative adversarial networks for sea subsurface temperature prediction,” IEEE transactions on neural networks and learning systems, 2021.
- Y. Meng, F. Gao, E. Rigall, R. Dong, J. Dong, and Q. Du, “Physical knowledge-enhanced deep neural network for sea surface temperature prediction,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–13, 2023.
- B. Lütjens, B. Leshchinskiy, C. Requena-Mesa, F. Chishtie, N. Díaz-Rodríguez, O. Boulais, A. Sankaranarayanan, A. Pina, Y. Gal, C. Raïssi et al., “Physically-consistent generative adversarial networks for coastal flood visualization,” arXiv preprint arXiv:2104.04785, 2021.
- T. Yuan, J. Zhu, W. Wang, J. Lu, X. Wang, X. Li, and K. Ren, “A space-time partial differential equation based physics-guided neural network for sea surface temperature prediction,” Remote Sensing, vol. 15, no. 14, p. 3498, 2023.
- Z. Chen, J. Gao, W. Wang, and Z. Yan, “Physics-informed generative neural network: an application to troposphere temperature prediction,” Environmental Research Letters, vol. 16, no. 6, p. 065003, 2021.
- F. Lin, X. Yuan, Y. Zhang, P. Sigdel, L. Chen, L. Peng, and N.-F. Tzeng, “Comprehensive transformer-based model architecture for real-world storm prediction,” in Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 2023, pp. 54–71.
- Ç. Küçük, A. Giannakos, S. Schneider, and A. Jann, “Transformer-based nowcasting of radar composites from satellite images for severe weather,” arXiv preprint arXiv:2310.19515, 2023.
- A. Bojesomo, H. Al-Marzouqi, P. Liatsis, G. Cong, and M. Ramanath, “Spatiotemporal swin-transformer network for short time weather forecasting.” in CIKM Workshops, 2021.
- A. Chattopadhyay, M. Mustafa, P. Hassanzadeh, E. Bach, and K. Kashinath, “Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers,” 2021.
- O. Bilgin, P. Maka, T. Vergutz, and S. Mehrkanoon, “Tent: Tensorized encoder transformer for temperature forecasting,” arXiv preprint arXiv:2106.14742, 2021.
- A. Bojesomo, H. AlMarzouqi, and P. Liatsis, “A novel transformer network with shifted window cross-attention for spatiotemporal weather forecasting,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023.
- Y. Gao, S. Miyata, Y. Matsunami, and Y. Akashi, “Spatio-temporal interpretable neural network for solar irradiation prediction using transformer,” Energy and Buildings, vol. 297, p. 113461, 2023.
- S. A. Vaghefi, Q. Wang, V. Muccione, J. Ni, M. Kraus, J. Bingler, T. Schimanski, C. Colesanti-Senni, N. Webersinke, C. Huggel, and M. Leippold, “chatclimate: Grounding conversational ai in climate science,” 2023.
- A. Krishnan and V. S. Anoop, “Climatenlp: Analyzing public sentiment towards climate change using natural language processing,” 2023.
- A. Auzepy, E. Tönjes, D. Lenz, and C. Funk, “Evaluating tcfd reporting: A new application of zero-shot analysis to climate-related financial disclosures,” 2023.
- M. Kraus, J. A. Bingler, M. Leippold, T. Schimanski, C. C. Senni, D. Stammbach, S. A. Vaghefi, and N. Webersinke, “Enhancing large language models with climate resources,” 2023.
- T. Wilson, P.-N. Tan, and L. Luo, “A low rank weighted graph convolutional approach to weather prediction,” in 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018, pp. 627–636.
- N. Y. Ayadi, C. Faron, F. Michel, F. Gandon, and O. Corby, “Wekg-mf: A knowledge graph of observational weather data,” in European Semantic Web Conference. Springer, 2022, pp. 101–106.
- P. Li, Y. Yu, D. Huang, Z.-H. Wang, and A. Sharma, “Regional heatwave prediction using graph neural network and weather station data,” Geophysical Research Letters, vol. 50, no. 7, p. e2023GL103405, 2023.
- J. Oskarsson, T. Landelius, and F. Lindsten, “Graph-based neural weather prediction for limited area modeling,” arXiv preprint arXiv:2309.17370, 2023.
- J. Han, H. Liu, H. Zhu, H. Xiong, and D. Dou, “Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5, 2021, pp. 4081–4089.
- J. Han, H. Liu, H. Xiong, and J. Yang, “Semi-supervised air quality forecasting via self-supervised hierarchical graph neural network,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp. 5230–5243, 2022.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
- F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE transactions on neural networks, vol. 20, no. 1, pp. 61–80, 2008.
- G.-G. Wang, H. Cheng, Y. Zhang, and H. Yu, “Enso analysis and prediction using deep learning: A review,” Neurocomputing, 2022.
- J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification and shrinking diameters,” ACM transactions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1, pp. 2–es, 2007.
- Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierarchical graph representation learning with differentiable pooling,” Advances in neural information processing systems, vol. 31, 2018.
- J.-H. Lee, S. S. Lee, H. G. Kim, S.-K. Song, S. Kim, and Y. M. Ro, “Mcsip net: Multichannel satellite image prediction via deep neural network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3, pp. 2212–2224, 2019.
- J. Cuomo and V. Chandrasekar, “Developing deep learning models for storm nowcasting,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2021.
- A. Gong, R. Li, B. Pan, H. Chen, G. Ni, and M. Chen, “Enhancing spatial variability representation of radar nowcasting with generative adversarial networks,” Remote Sensing, vol. 15, no. 13, p. 3306, 2023.
- M. R. Ehsani, A. Zarei, H. V. Gupta, K. Barnard, E. Lyons, and A. Behrangi, “Nowcasting-nets: Representation learning to mitigate latency gap of satellite precipitation products using convolutional and recurrent neural networks,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–21, 2022.
- J. G. Fernández and S. Mehrkanoon, “Broad-unet: Multi-scale feature learning for nowcasting tasks,” Neural Networks, vol. 144, pp. 419–427, 2021.
- C. Huang, C. Bai, S. Chan, and J. Zhang, “Mmstn: A multi-modal spatial-temporal network for tropical cyclone short-term prediction,” Geophysical Research Letters, vol. 49, no. 4, p. e2021GL096898, 2022.
- C. Luo, X. Li, and Y. Ye, “Pfst-lstm: A spatiotemporal lstm model with pseudoflow prediction for precipitation nowcasting,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 843–857, 2020.
- X. Dong, Z. Zhao, Y. Wang, J. Wang, and C. Hu, “Motion-guided global–local aggregation transformer network for precipitation nowcasting,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2022.
- V. L. Guen and N. Thome, “Disentangling physical dynamics from unknown factors for unsupervised video prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11 474–11 484.
- M. Andrychowicz, L. Espeholt, D. Li, S. Merchant, A. Merose, F. Zyda, S. Agrawal, and N. Kalchbrenner, “Deep learning for day forecasts from sparse observations,” 2023.
- W. Cai, A. Santoso, G. Wang, S.-W. Yeh, S.-I. An, K. M. Cobb, M. Collins, E. Guilyardi, F.-F. Jin, J.-S. Kug et al., “Enso and greenhouse warming,” Nature Climate Change, vol. 5, no. 9, pp. 849–859, 2015.
- J. Zhang, K. Howard, C. Langston, B. Kaney, Y. Qi, L. Tang, H. Grams, Y. Wang, S. Cocks, S. Martinaitis et al., “Multi-radar multi-sensor (mrms) quantitative precipitation estimation: Initial operating capabilities,” Bulletin of the American Meteorological Society, vol. 97, no. 4, pp. 621–638, 2016.
- S. C. M. Sharma and A. Mitra, “Resdeepd: A residual super-resolution network for deep downscaling of daily precipitation over india,” Environmental Data Science, vol. 1, p. e19, 2022.
- T. Ballard and G. Erinjippurath, “Contrastive learning for climate model bias correction and super-resolution,” arXiv preprint arXiv:2211.07555, 2022.
- X. Hu, M. A. Naiel, A. Wong, M. Lamm, and P. Fieguth, “Runet: A robust unet architecture for image super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0.
- F. Min, L. Wang, S. Pan, and G. Song, “D 2 unet: Dual decoder u-net for seismic image super-resolution reconstruction,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–13, 2023.
- Q. Yu, M. Zhu, Q. Zeng, H. Wang, Q. Chen, X. Fu, and Z. Qing, “Weather radar super-resolution reconstruction based on residual attention back-projection network,” Remote Sensing, vol. 15, no. 8, p. 1999, 2023.
- X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy, “Esrgan: Enhanced super-resolution generative adversarial networks,” in Proceedings of the European conference on computer vision (ECCV) workshops, 2018, pp. 0–0.
- C. D. Watson, C. Wang, T. Lynar, and K. Weldemariam, “Investigating two super-resolution methods for downscaling precipitation: Esrgan and car,” arXiv preprint arXiv:2012.01233, 2020.
- J. Wang, Z. Liu, I. Foster, W. Chang, R. Kettimuthu, and V. R. Kotamarthi, “Fast and accurate learned multiresolution dynamical downscaling for precipitation,” Geoscientific Model Development, vol. 14, no. 10, pp. 6355–6372, 2021.
- K. Stengel, A. Glaws, D. Hettinger, and R. N. King, “Adversarial super-resolution of climatological wind and solar data,” Proceedings of the National Academy of Sciences, vol. 117, no. 29, pp. 16 805–16 815, 2020.
- N. P. Juan, J. O. Rodríguez, V. N. Valdecantos, and G. Iglesias, “Data-driven and physics-based approach for wave downscaling: A comparative study,” Ocean Engineering, vol. 285, p. 115380, 2023.
- D. Feng, Z. Tan, and Q. He, “Physics-informed neural networks of the saint-venant equations for downscaling a large-scale river model,” Water Resources Research, vol. 59, no. 2, p. e2022WR033168, 2023.
- M. Bocquet, , J. Brajard, A. Carrassi, L. Bertino, , and and, “Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization,” Foundations of Data Science, vol. 2, no. 1, pp. 55–80, 2020. [Online]. Available: https://doi.org/10.3934%2Ffods.2020004
- A. J. Geer, “Learning earth system models from observations: machine learning or data assimilation?” Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200089, 2021.
- D. Hershcovich, N. Webersinke, M. Kraus, J. A. Bingler, and M. Leippold, “Towards climate awareness in nlp research,” arXiv preprint arXiv:2205.05071, 2022.
- OpenAI, “Gpt-4 technical report,” 2023.
- T. Knutson, S. J. Camargo, J. C. Chan, K. Emanuel, C.-H. Ho, J. Kossin, M. Mohapatra, M. Satoh, M. Sugi, K. Walsh et al., “Tropical cyclones and climate change assessment: Part ii: Projected response to anthropogenic warming,” Bulletin of the American Meteorological Society, vol. 101, no. 3, pp. E303–E322, 2020.
- C. Bai, Z. Cai, X. Yin, and J. Zhang, “Lsdssimr: Large-scale dust storm database based on satellite images and meteorological reanalysis data,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023.
- K. Kashinath, M. Mudigonda, S. Kim, L. Kapp-Schwoerer, A. Graubner, E. Karaismailoglu, L. Von Kleist, T. Kurth, A. Greiner, A. Mahesh et al., “Climatenet: An expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather,” Geoscientific Model Development, vol. 14, no. 1, pp. 107–124, 2021.
- E. Racah, C. Beckham, T. Maharaj, S. Ebrahimi Kahou, M. Prabhat, and C. Pal, “Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events,” Advances in neural information processing systems, vol. 30, 2017.
- R. A. Sobash, D. J. Gagne, C. L. Becker, D. Ahijevych, G. N. Gantos, and C. S. Schwartz, “Diagnosing storm mode with deep learning in convection-allowing models,” Monthly Weather Review, 2023.
- E. M. Rasmusson and T. H. Carpenter, “Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/el niño,” Monthly Weather Review, vol. 110, no. 5, pp. 354–384, 1982.
- M. Latif, D. Anderson, T. Barnett, M. Cane, R. Kleeman, A. Leetmaa, J. O’Brien, A. Rosati, and E. Schneider, “A review of the predictability and prediction of enso,” Journal of Geophysical Research: Oceans, vol. 103, no. C7, pp. 14 375–14 393, 1998.
- D. Song, X. Su, W. Li, Z. Sun, T. Ren, W. Liu, and A.-A. Liu, “Spatial-temporal transformer network for multi-year enso prediction,” Frontiers in Marine Science, vol. 10, p. 1143499, 2023.
- W. Fang, Y. Sha, and V. S. Sheng, “Survey on the application of artificial intelligence in enso forecasting,” Mathematics, vol. 10, no. 20, p. 3793, 2022.
- M. Liu-Schiaffini, C. E. Singer, N. Kovachki, T. Schneider, K. Azizzadenesheli, and A. Anandkumar, “Tipping point forecasting in non-stationary dynamics on function spaces,” 2023.
- A. Gnanadesikan, J. Brett, J. Sleeman, and D. Chung, “Using ai to detect climate tipping points-or why it’s hard to understand rapid changes in the earth system,” 2023.
- M. Rietkerk, R. Bastiaansen, S. Banerjee, J. van de Koppel, M. Baudena, and A. Doelman, “Evasion of tipping in complex systems through spatial pattern formation,” Science, vol. 374, no. 6564, p. eabj0359, 2021.
- T. M. Bury, R. Sujith, I. Pavithran, M. Scheffer, T. M. Lenton, M. Anand, and C. T. Bauch, “Deep learning for early warning signals of tipping points,” Proceedings of the National Academy of Sciences, vol. 118, no. 39, p. e2106140118, 2021.
- C. Zhang, “Madden-julian oscillation,” Reviews of Geophysics, vol. 43, no. 2, 2005.
- ——, “Madden–julian oscillation: Bridging weather and climate,” Bulletin of the American Meteorological Society, vol. 94, no. 12, pp. 1849–1870, 2013.
- C. Minixhofer, M. Swan, C. McMeekin, and P. Andreadis, “Droughted: A dataset and methodology for drought forecasting spanning multiple climate zones,” in ICML 2021 Workshop on Tackling Climate Change with Machine Learning, 2021.
- V. Grabar, A. Marusov, A. Zaytsev, Y. Maximov, N. Sotiriadi, and A. Bulkin, “Long-term drought prediction using deep neural networks based on geospatial weather data,” arXiv preprint arXiv:2309.06212, 2023.
- A. Danandeh Mehr, A. Rikhtehgar Ghiasi, Z. M. Yaseen, A. U. Sorman, and L. Abualigah, “A novel intelligent deep learning predictive model for meteorological drought forecasting,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 8, pp. 10 441–10 455, 2023.
- F. A. Prodhan, J. Zhang, S. S. Hasan, T. P. P. Sharma, and H. P. Mohana, “A review of machine learning methods for drought hazard monitoring and forecasting: Current research trends, challenges, and future research directions,” Environmental Modelling & Software, vol. 149, p. 105327, 2022.
- R. Mendelsohn, K. Emanuel, S. Chonabayashi, and L. Bakkensen, “The impact of climate change on global tropical cyclone damage,” Nature climate change, vol. 2, no. 3, pp. 205–209, 2012.
- D. J. Befort, K. I. Hodges, and A. Weisheimer, “Seasonal prediction of tropical cyclones over the north atlantic and western north pacific,” Journal of Climate, vol. 35, no. 5, pp. 1385–1397, 2022.
- M. Scheuerer, M. B. Switanek, R. P. Worsnop, and T. M. Hamill, “Using artificial neural networks for generating probabilistic subseasonal precipitation forecasts over california,” Monthly Weather Review, vol. 148, no. 8, pp. 3489–3506, 2020.
- D. Specq and L. Batté, “Improving subseasonal precipitation forecasts through a statistical–dynamical approach: application to the southwest tropical pacific,” Climate Dynamics, vol. 55, no. 7-8, pp. 1913–1927, 2020.
- C. O. de Burgh-Day and T. Leeuwenburg, “Machine learning for numerical weather and climate modelling: a review,” EGUsphere, vol. 2023, pp. 1–48, 2023.
- Q. Yang, C.-Y. Lee, M. K. Tippett, D. R. Chavas, and T. R. Knutson, “Machine learning–based hurricane wind reconstruction,” Weather and Forecasting, vol. 37, no. 4, pp. 477–493, 2022.
- E. Vosper, P. Watson, L. Harris, A. McRae, R. Santos-Rodriguez, L. Aitchison, and D. Mitchell, “Deep learning for downscaling tropical cyclone rainfall to hazard-relevant spatial scales,” Journal of Geophysical Research: Atmospheres, p. e2022JD038163, 2023.
- S. Ashkboos, L. Huang, N. Dryden, T. Ben-Nun, P. Dueben, L. Gianinazzi, L. Kummer, and T. Hoefler, “Ens-10: A dataset for post-processing ensemble weather forecasts,” Advances in Neural Information Processing Systems, vol. 35, pp. 21 974–21 987, 2022.
- S. Peng, Y. Ding, W. Liu, and Z. Li, “1 km monthly temperature and precipitation dataset for china from 1901 to 2017,” Earth System Science Data, vol. 11, no. 4, pp. 1931–1946, 2019.
- A. Kitamoto, J. Hwang, B. Vuillod, L. Gautier, Y. Tian, and T. Clanuwat, “Digital typhoon: Long-term satellite image dataset for the spatio-temporal modeling of tropical cyclones,” arXiv preprint arXiv:2311.02665, 2023.
- M. Sit, B.-C. Seo, and I. Demir, “Iowarain: A statewide rain event dataset based on weather radars and quantitative precipitation estimation,” arXiv preprint arXiv:2107.03432, 2021.
- S. Wang, Y. Li, J. Zhang, Q. Meng, L. Meng, and F. Gao, “Pm2. 5-gnn: A domain knowledge enhanced graph neural network for pm2. 5 forecasting,” in Proceedings of the 28th international conference on advances in geographic information systems, 2020, pp. 163–166.
- X. Chen, K. Feng, N. Liu, Y. Lu, Z. Tong, B. Ni, Z. Liu, and N. Lin, “Rainnet: a large-scale dataset for spatial precipitation downscaling,” arXiv preprint arXiv:2012.09700, 2020.
- R. Kurinchi-Vendhan, “Continental united states solar irradiance,” 9 2021.
- C. Requena-Mesa, V. Benson, M. Reichstein, J. Runge, and J. Denzler, “Earthnet2021: A large-scale dataset and challenge for earth surface forecasting as a guided video prediction task.” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1132–1142.
- T. Kim, N. Ho, D. Kim, and S.-Y. Yun, “Benchmark dataset for precipitation forecasting by post-processing the numerical weather prediction,” arXiv preprint arXiv:2206.15241, 2022.
- M. Paulat, C. Frei, M. Hagen, and H. Wernli, “A gridded dataset of hourly precipitation in germany: Its construction, climatology and application,” Meteorologische Zeitschrift, vol. 17, pp. 719–732, 2008.
- Y. Tang, J. Zhou, X. Pan, Z. Gong, and J. Liang, “Postrainbench: A comprehensive benchmark and a new model for precipitation forecasting,” 2023.
- G. Larvor, L. Berthomier, V. Chabot, B. Le Pape, B. Pradel, and L. Perez, “Meteonet, an open reference weather dataset by meteo-france,” 2020.
- Y. Choi, K. Cha, M. Back, H. Choi, and T. Jeon, “Rain-f+: The data-driven precipitation prediction model for integrated weather observations,” Remote Sensing, vol. 13, no. 18, p. 3627, 2021.
- C. S. de Witt, C. Tong, V. Zantedeschi, D. De Martini, A. Kalaitzis, M. Chantry, D. Watson-Parris, and P. Bilinski, “Rainbench: Towards data-driven global precipitation forecasting from satellite imagery,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 17, 2021, pp. 14 902–14 910.
- T. Diggelmann, J. Boyd-Graber, J. Bulian, M. Ciaramita, and M. Leippold, “Climate-fever: A dataset for verification of real-world climate claims,” 2021.
- T. Laud, D. Spokoyny, T. Corringham, and T. Berg-Kirkpatrick, “Climabench: A benchmark dataset for climate change text understanding in english,” arXiv preprint arXiv:2301.04253, 2023.
- R. Vaid, K. Pant, and M. Shrivastava, “Towards fine-grained classification of climate change related social media text,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, 2022, pp. 434–443.
- P. Mishra and R. Mittal, “Neuralnere: Neural named entity relationship extraction for end-to-end climate change knowledge graph construction,” in ICML 2021 Workshop on Tackling Climate Change with Machine Learning, 2021. [Online]. Available: https://www.climatechange.ai/papers/icml2021/76
- K. E. Trenberth and J. G. Olson, “An evaluation and intercomparison of global analyses from the national meteorological center and the european centre for medium range weather forecasts,” Bulletin of the American Meteorological Society, vol. 69, no. 9, pp. 1047–1057, 1988.
- J. A. Carton and B. S. Giese, “Soda: A reanalysis of ocean climate,” J. Geophys. Res., submitted, 2005.
- Y. Choi, K. Cha, M. Back, H. Choi, and T. Jeon, “Rain-f: A fusion dataset for rainfall prediction using convolutional neural network,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021, pp. 7145–7148.
- J. E. Johnson, Q. Febvre, A. Gorbunova, S. Metref, M. Ballarotta, J. L. Sommer, and R. Fablet, “Oceanbench: The sea surface height edition,” 2023.
- P. Bommer, M. Kretschmer, A. Hedström, D. Bareeva, and M. M. C. Höhne, “Finding the right xai method – a guide for the evaluation and ranking of explainable ai methods in climate science,” 2023.
- L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated learning,” Computers & Industrial Engineering, vol. 149, p. 106854, 2020.
- L. Wang, X. Zhang, H. Su, and J. Zhu, “A comprehensive survey of continual learning: Theory, method and application,” arXiv preprint arXiv:2302.00487, 2023.
- S. Chen, X. Wang, S. Ren, J. Yang, Y. Zhang, and G. Wang, “Collaborative photonic crystal fiber property optimization: A new paradigm for reverse design,” IEEE Photonics Technology Letters, 2023.
- Shengchao Chen (12 papers)
- Guodong Long (115 papers)
- Jing Jiang (192 papers)
- Dikai Liu (13 papers)
- Chengqi Zhang (74 papers)