Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Predicting the morphology of multiphase biomolecular condensates from protein interaction networks (2312.02806v2)

Published 5 Dec 2023 in cond-mat.soft and physics.bio-ph

Abstract: Phase-separated biomolecular condensates containing proteins and RNAs can assemble into higher-order structures by forming thermodynamically stable interfaces between immiscible phases. Using a minimal model of a protein/RNA interaction network, we demonstrate how a "shared" protein species that partitions into both phases of a multiphase condensate can function as a tunable surfactant that modulates the interfacial properties. We use Monte Carlo simulations and free-energy calculations to identify conditions under which a low concentration of this shared species is sufficient to trigger a wetting transition. We also describe a numerical approach based on classical density functional theory to predict concentration profiles and surface tensions directly from the model protein/RNA interaction network. Finally, we show that the wetting phase diagrams that emerge from our calculations can be understood in terms of a simple model of selective adsorption to a fluctuating interface. Our work shows how a low-concentration protein species might function as a biological switch for regulating multiphase condensate morphologies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. A. A. Hyman, C. A. Weber, and F. Jülicher, Liquid–liquid phase separation in biology, Annu. Rev. Cell Dev. Biol. 30, 39 (2014).
  2. R. J. Wheeler and A. A. Hyman, Controlling compartmentalization by non-membrane-bound organelles, Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170193 (2018).
  3. Y. Shin and C. P. Brangwynne, Liquid phase condensation in cell physiology and disease, Science 357, eaaf4382 (2017).
  4. C. J. Decker and R. Parker, P-bodies and stress granules: possible roles in the control of translation and mRNA degradation, Cold Spring Harb. Perspect. 4, a012286 (2012).
  5. C. P. Brangwynne, T. J. Mitchison, and A. A. Hyman, Active liquid-like behavior of nucleoli determines their size and shape in xenopus laevis oocytes, Proc. Natl. Acad. Sci. USA 108, 4334 (2011).
  6. J. Berry, C. P. Brangwynne, and M. Haataja, Physical principles of intracellular organization via active and passive phase transitions, Rep. Prog. Phys. 81, 046601 (2018).
  7. A. G. Pyo, Y. Zhang, and N. S. Wingreen, Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates, Iscience 25, 103852 (2022).
  8. W. M. Jacobs, Theory and simulation of multiphase coexistence in biomolecular mixtures, J. Chem. Theory Comput. 19, 3429 (2023).
  9. A. L. Talapov and H. W. J. Blöte, The magnetization of the 3d ising model, J. Phys. A Math. Gen. 29, 5727 (1996).
  10. Triple-point coexistence properties of the lennard-jones system, Chem. Phys. Lett. 51, 155 (1977).
  11. J.-P. Hansen and I. R. McDonald, Chapter 6 - inhomogeneous fluids, in Theory of Simple Liquids (Fourth Edition), edited by J.-P. Hansen and I. R. McDonald (Academic Press, Oxford, 2013) fourth edition ed., pp. 203–264.
  12. G. Torrie and J. Valleau, Nonphysical sampling distributions in monte carlo free-energy estimation: Umbrella sampling, J. Comput. Phys. 23, 187 (1977).
  13. D. Frenkel and B. Smit, Understanding molecular simulation: From algorithms to applications (Elsevier, 2023).
  14. M. R. Shirts and J. D. Chodera, Statistically optimal analysis of samples from multiple equilibrium states, J. Chem. Phys. 129 (2008).
  15. P. G. de Gennes, Wetting: statics and dynamics, Rev. Mod. Phys. 57, 827 (1985).
  16. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. i. interfacial free energy, J. Chem. Phys. 28, 258 (1958).
  17. J. H. Hildebrand, Solubility. XII. Regular solutions, J. Am. Chem. Soc. 51, 66 (1929).
  18. C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika 1, 211–218 (1936).
  19. W. E, W. Ren, and E. Vanden-Eijnden, Simplified and improved string method for computing the minimum energy paths in barrier-crossing events, J. Chem. Phys. 126, 164103 (2007).
  20. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum., J. Am. Chem. Soc. 40, 1361 (1918).
  21. B.-j. Jeon, D. T. Nguyen, and O. A. Saleh, Sequence-controlled adhesion and microemulsification in a two-phase system of DNA liquid droplets, J. Phys. Chem. B 124, 8888 (2020).
  22. Y. Sato, T. Sakamoto, and M. Takinoue, Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets, Sci. Adv. 6, eaba3471 (2020).
  23. F. Gao and L. Han, Implementing the nelder-mead simplex algorithm with adaptive parameters, Comput. Optim. Appl. 51, 259 (2012).
  24. J. J. Moré, B. S. Garbow, and K. E. Hillstrom, User guide for MINPACK-1, Tech. Rep. (CM-P00068642, 1980).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com