Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogenization and simulation of heat transfer through a thin grain layer (2312.02704v3)

Published 5 Dec 2023 in math.AP

Abstract: We investigated the effective influence of grain structures on the heat transfer between a fluid and solid domain using mathematical homogenization. The presented model consists of heat equations inside the different domains, coupled through either perfect or imperfect thermal contact. The size and the period of the grains are of order $\varepsilon$, therefore forming a thin layer. The equation parameters inside the grains also depend on $\varepsilon$. We considered two distinct scenarios: Case (a), where the grains are disconnected, and Case (b), where the grains form a connected geometry but in a way such that the fluid and solid are still in contact. In both cases, we determined the effective differential equations for the limit $\varepsilon \to 0$ via the concept of two-scale convergence for thin layers. We also presented and studied a numerical algorithm to solve the homogenized problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Y. Achdou, O. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries, Journal of Computational Physics, 147 (1998), 187–218, URL https://www.doi.org/10.1006/jcph.1998.6088.
  2. E. N. Ahmed, A. Bottaro and G. Tanda, A homogenization approach for buoyancy-induced flows over micro-textured vertical surfaces, Journal of Fluid Mechanics, 941 (2022), A53, URL https://www.doi.org/10.1017/jfm.2022.320.
  3. G. Allaire, Homogenization and two scale convergence, SIAM J. Math. Anal., 23 (1992), 1482–1518, URL https://www.doi.org/10.1137/0523084.
  4. G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes ii: Non-critical sizes of the holes for a volume distribution and a surface distribution of holes, Archive for Rational Mechanics and Analysis, 113 (1991), 261–298, URL https://www.doi.org/10.1007/bf00375066.
  5. M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes and G. N. Wells, The FEniCS project version 1.5, Arch. Num. Soft., 3, URL https://www.doi.org/10.11588/ans.2015.100.20553.
  6. Y. Amirat, G. A. Chechkin and R. R. Gadyl’shin, Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with an oscillating boundary, Computational Mathematics and Mathematical Physics, 46 (2006), 97–110, URL https://doi.org/10.1134/S0965542506010118.
  7. W. Arendt, G. Metafune, D. Pallara and S. Romanell, The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions, Semigroup Forum, 67 (2003), 247–261, URL https://doi.org/10.1007/s00233-002-0010-8.
  8. A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the helmholtz equation, SIAM Journal on Applied Mathematics, 56 (1996), 1664–1693, URL https://doi.org/10.1137/S0036139995281822.
  9. A. Bhattacharya, M. Gahn and M. Neuss-Radu, Effective transmission conditions for reaction–diffusion processes in domains separated by thin channels, Applicable Analysis, 101 (2022), 1896–1910, URL https://doi.org/10.1080/00036811.2020.1789599.
  10. S. H. Bhavnani and A. E. Bergles, Natural convection heat transfer from sinusoidal wavy surfaces, Wärme - und Stoffübertragung, 26 (1991), 341–349, URL https://doi.org/10.1007/BF01591667.
  11. V. Bonnaillie-Noël, M. Dambrine, F. Hérau and G. Vial, On generalized Ventcel’s type boundary conditions for Laplace operator in a bounded domain, SIAM Journal on Mathematical Analysis, 42 (2010), 931–945, URL https://doi.org/10.1137/090756521.
  12. A. N. Brooks and T. J. Hughes, Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 32 (1982), 199–259, URL https://www.doi.org/10.1016/0045-7825(82)90071-8.
  13. H. Chen, J. Zhao, Y. Dai, Z. Wang and T. Yu, Simulation of 3d grinding temperature field by using an improved finite difference method, The International Journal of Advanced Manufacturing Technology, 108 (2020), 3871–3884, URL https://www.doi.org/10.1007/s00170-020-05513-5.
  14. D. Cioranescu, J. Paulin and J. Telega, Homogenization of reticulated structures, Applied Mechanics Reviews - APPL MECH REV, 54, URL https://www.doi.org/10.1115/1.1383678.
  15. C. Conca, The Stokes sieve problem, Communications in Applied Numerical Methods, 4 (1988), 113–121, URL https://www.doi.org/0.1002/cnm.1630040115.
  16. P. Donato, E. Jose and D. Onofrei, Asymptotic analysis of a multiscale parabolic problem with a rough fast oscillating interface, Archive of Applied Mechanics, 89 (2019), 1–29, URL https://www.doi.org/10.1007/s00419-018-1415-5.
  17. P. Donato, A. Piatnitski and P. Lebedev, On the effective interfacial resistance through rough surfaces, Communications on Pure and Applied Analysis, 9, URL https://www.doi.org/10.3934/cpaa.2010.9.1295.
  18. M. Eden and T. Freudenberg, Effective heat transfer between a porous medium and a fluid layer: Homogenization and simulation, (2022), submitted.
  19. M. Eden and H. S. Mahato, Homogenization of a poroelasticity model for fiber-reinforced hydrogels, Math. Methods Appl. Sci., 45 (2022), 11562–11580, URL https://www.doi.org/10.1002/mma.8466.
  20. M. Gahn and E. Baensch, A mixed finite-element method for elliptic operators with Wentzell boundary condition, IMA Journal of Numerical Analysis, 40, URL https://www.doi.org/10.1093/imanum/dry068.
  21. M. Gahn and M. Neuss-Radu, Singular limit for reactive diffusive transport through an array of thin channels in case of critical diffusivity, Multiscale Modeling & Simulation, 19 (2021), 1573–1600, URL https://doi.org/10.1137/21M1390505.
  22. M. Gahn, M. Neuss-Radu and P. Knabner, Derivation of effective transmission conditions for domains separated by a membrane for different scaling of membrane diffusivity, Discrete and Continuous Dynamical Systems - Series S, 10 (2017), 773–797, URL https://www.doi.org/10.3934/dcdss.2017039.
  23. M. Gahn, M. Neuss-Radu and P. Knabner, Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface, Networks and Heterogeneous Media, 13 (2018), 609–640, URL https://www.doi.org/10.3934/nhm.2018028.
  24. C. Geuzaine and J.-F. Remacle, Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods. Eng., 79 (2009), 1309 – 1331, URL https://www.doi.org/10.1002/nme.2579.
  25. R. Gu, M. Shillor, G. Barber and T. Jen, Thermal analysis of the grinding process, Mathematical and Computer Modelling, 39 (2004), 991–1003, URL https://www.doi.org/10.1016/S0895-7177(04)90530-4.
  26. M. Höpker and M. Böhm, A note on the existence of extension operators for Sobolev spaces on periodic domains, C. R. Math. Acad. Sci. Paris, 352 (2014), 807–810, URL https://doi.org/10.1016/j.crma.2014.09.002.
  27. C. Introïni, M. Quintard and F. Duval, Effective surface modeling for momentum and heat transfer over rough surfaces: Application to a natural convection problem, International Journal of Heat and Mass Transfer, 54 (2011), 3622–3641, URL https://www.doi.org/10.1016/j.ijheatmasstransfer.2011.03.019.
  28. H. Nagaoka and S. Ohgaki, Mass transfer mechanism in a porous riverbed, Water Research, 24 (1990), 417–425, URL https://www.doi.org/10.1016/0043-1354(90)90223-S.
  29. M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM Journal on Mathematical Analysis, 39 (2007), 687–720, URL https://doi.org/10.1137/060665452.
  30. J. Nevard and J. B. Keller, Homogenization of rough boundaries and interfaces, SIAM Journal on Applied Mathematics, 57 (1997), 1660–1686, URL https://doi.org/10.1137/S0036139995291088.
  31. P. R. Owen and W. R. Thomson, Heat transfer across rough surfaces, Journal of Fluid Mechanics, 15 (1963), 321–334, URL https://www.doi.org/10.1017/S0022112063000288.
  32. B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Computational Mathematics and Mathematical Physics, 4 (1964), 1–17, URL https://www.doi.org/10.1016/0041-5553(64)90137-5.
  33. B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Society for Industrial and Applied Mathematics, 2008, URL https://www.doi.org/10.1137/1.9780898717440.
  34. W. Rowe, M. Morgan, A. Batako and T. Jin, Energy and temperature analysis in grinding, Laser Metrology and Machine Performance VI, 3–23.
  35. R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2014.
  36. R. Showalter and D. Visarraga, Double-diffusion models from a highly-heterogeneous medium, Journal of Mathematical Analysis and Applications, 295 (2004), 191–210, URL https://www.doi.org/10.1016/j.jmaa.2004.03.031.
  37. C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. & Fluids, 1 (1973), 73–100, URL https://www.doi.org/10.1016/0045-7930(73)90027-3.
  38. K. Ting, A. K. Mozumder and P. K. Das, Effect of surface roughness on heat transfer and entropy generation of mixed convection in nanofluid, Physics of Fluids, 31 (2019), 093602, URL https://doi.org/10.1063/1.5111104.
  39. T. Ueda, H. Tanaka, A. Torii and T. Matsuo, Measurement of grinding temperature of active grains using infrared radiation pyrometer with optical fiber, CIRP Annals, 42 (1993), 405–408, URL https://www.doi.org/10.1016/S0007-8506(07)62472-X.
  40. F. Wiesener, B. Bergmann, M. Wichmann, M. Eden, T. Freudenberg and A. Schmidt, Modeling of heat transfer in tool grinding for multiscale simulations, Procedia CIRP, 117 (2023), 269–274, URL https://www.doi.org/10.1016/j.procir.2023.03.046.
  41. J. Yang, Z. Wang, O. Adetoro, P. Wen and C. Bailey, The thermal analysis of cutting/grinding processes by meshless finite block method, Engineering Analysis with Boundary Elements, 100 (2019), 68–79, URL https://www.doi.org/10.1016/j.enganabound.2018.03.003, Improved Localized and Hybrid Meshless Methods - Part 1.
  42. M. Yousaf and S. Usman, Role of surface roughness during natural convection, World Journal of Engineering and Technology, 03 (2015), 140–148, URL https://www.doi.org/10.4236/wjet.2015.33C021.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com