Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Congestion-aware Distributed Task Offloading in Wireless Multi-hop Networks Using Graph Neural Networks (2312.02471v2)

Published 5 Dec 2023 in cs.NI, cs.LG, and eess.SP

Abstract: Computational offloading has become an enabling component for edge intelligence in mobile and smart devices. Existing offloading schemes mainly focus on mobile devices and servers, while ignoring the potential network congestion caused by tasks from multiple mobile devices, especially in wireless multi-hop networks. To fill this gap, we propose a low-overhead, congestion-aware distributed task offloading scheme by augmenting a distributed greedy framework with graph-based machine learning. In simulated wireless multi-hop networks with 20-110 nodes and a resource allocation scheme based on shortest path routing and contention-based link scheduling, our approach is demonstrated to be effective in reducing congestion or unstable queues under the context-agnostic baseline, while improving the execution latency over local computing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. CRC Press, 2013.
  2. D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.
  3. A. Kott, A. Swami, and B. J. West, “The internet of battle things,” Computer, vol. 49, no. 12, pp. 70–75, 2016.
  4. “Cisco annual internet report (2018–2023),” white paper, Cisco Systems, Inc., Mar. 2020.
  5. I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The future of wireless communications systems,” IEEE Access, vol. 8, pp. 133995–134030, 2020.
  6. X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-Dhahir, and R. Schober, “Massive access for 5G and beyond,” IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 615–637, 2021.
  7. M. Noor-A-Rahim, Z. Liu, H. Lee, M. O. Khyam, J. He, D. Pesch, K. Moessner, W. Saad, and H. V. Poor, “6g for vehicle-to-everything (v2x) communications: Enabling technologies, challenges, and opportunities,” Proceedings of the IEEE, vol. 110, no. 6, pp. 712–734, 2022.
  8. L. Tassiulas, “Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks,” IEEE Trans. on Automatic Control, vol. 31, no. 12, 1992.
  9. C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region of the greedy maximal scheduling algorithm in multihop wireless networks,” IEEE/ACM Trans. Netw., vol. 17, no. 4, pp. 1132–1145, 2009.
  10. X. Lin and S. B. Rasool, “Constant-time distributed scheduling policies for ad hoc wireless networks,” IEEE Trans. on Automatic Control, vol. 54, no. 2, pp. 231–242, 2009.
  11. L. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput and utility maximization in wireless networks,” IEEE/ACM Trans. Netw., vol. 18, no. 3, pp. 960–972, 2010.
  12. Z. Zhao, G. Verma, C. Rao, A. Swami, and S. Segarra, “Link scheduling using graph neural networks,” IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 3997–4012, 2023.
  13. Z. Zhao, B. Radojicic, G. Verma, A. Swami, and S. Segarra, “Delay-aware backpressure routing using graph neural networks,” in IEEE Int. Conf. on Acoustics, Speech and Signal Process. (ICASSP), pp. 4720–4724, 2023.
  14. Z. Zhao, A. Swami, and S. Segarra, “Graph-based deterministic policy gradient for repetitive combinatorial optimization problems,” in Intl. Conf. Learn. Repres. (ICLR), 2023.
  15. D. Van Le and C.-K. Tham, “Quality of service aware computation offloading in an ad-hoc mobile cloud,” IEEE Trans. Vehicular Tech., vol. 67, no. 9, pp. 8890–8904, 2018.
  16. A. J. Ferrer, J. M. Marquès, and J. Jorba, “Towards the decentralised cloud: Survey on approaches and challenges for mobile, ad hoc, and edge computing,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.
  17. C. Funai, C. Tapparello, and W. Heinzelman, “Computational offloading for energy constrained devices in multi-hop cooperative networks,” IEEE Transactions on Mobile Computing, vol. 19, no. 1, pp. 60–73, 2019.
  18. R. Chattopadhyay and C.-K. Tham, “Fully and partially distributed incentive mechanism for a mobile edge computing network,” IEEE Transactions on Mobile Computing, vol. 21, no. 1, pp. 139–153, 2020.
  19. Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Mobile edge computing network control: Tradeoff between delay and cost,” in IEEE Global Communications Conference (GLOBECOM), pp. 1–6, 2020.
  20. G. Feng, X. Li, Z. Gao, C. Wang, H. Lv, and Q. Zhao, “Multi-path and multi-hop task offloading in mobile ad hoc networks,” IEEE Trans. Vehicular Tech., vol. 70, no. 6, pp. 5347–5361, 2021.
  21. L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi, “Mobility-aware multi-hop task offloading for autonomous driving in vehicular edge computing and networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 2, pp. 2169–2182, 2022.
  22. X. Dai, Z. Xiao, H. Jiang, H. Chen, G. Min, S. Dustdar, and J. Cao, “A learning-based approach for vehicle-to-vehicle computation offloading,” IEEE Internet of Things Journal, vol. 10, no. 8, pp. 7244–7258, 2022.
  23. X. Li, T. Chen, D. Yuan, J. Xu, and X. Liu, “A novel graph-based computation offloading strategy for workflow applications in mobile edge computing,” IEEE Transactions on Services Computing, vol. 16, no. 2, pp. 845–857, 2022.
  24. W. Cheng, X. Cheng, T. Znati, X. Lu, and Z. Lu, “The complexity of channel scheduling in multi-radio multi-channel wireless networks,” in IEEE Intl. Conf. on Computer Comms. (INFOCOM), pp. 1512–1520, 2009.
  25. J. Yang, S. C. Draper, and R. Nowak, “Learning the interference graph of a wireless network,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 3, pp. 631–646, 2016.
  26. J. D. Little, “A proof for the queuing formula: L= λ𝜆\lambdaitalic_λ w,” Operations research, vol. 9, no. 3, pp. 383–387, 1961.
  27. T. Öncan, “A survey of the generalized assignment problem and its applications,” INFOR: Information Systems and Operational Research, vol. 45, no. 3, pp. 123–141, 2007.
  28. F. Harary and R. Z. Norman, “Some properties of line digraphs,” Rendiconti del circolo matematico di palermo, vol. 9, pp. 161–168, 1960.
  29. R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics, vol. 16, no. 1, pp. 87–90, 1958.
  30. L. R. Ford Jr, “Network flow theory,” tech. rep., Rand Corp Santa Monica CA, 1956.
  31. A. Bernstein and D. Nanongkai, “Distributed exact weighted all-pairs shortest paths in near-linear time,” in ACM SIGACT Symp. Theory of Comp., pp. 334–342, 2019.
  32. R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Rev. Mod. Phys., vol. 74, pp. 47–97, Jan 2002.
  33. M. Stoer and F. Wagner, “A simple min-cut algorithm,” Journal of the ACM (JACM), vol. 44, no. 4, pp. 585–591, 1997.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com