Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Fourier Transform periodic interpolation method for superposition sums in a periodic unit cell (2312.02376v2)

Published 4 Dec 2023 in math.NA, cs.NA, math-ph, math.MP, and physics.comp-ph

Abstract: We propose a Fast Fourier Transform based Periodic Interpolation Method (FFT-PIM), a flexible and computationally efficient approach for computing the scalar potential given by a superposition sum in a unit cell of an infinitely periodic array. Under the same umbrella, FFT-PIM allows computing the potential for 1D, 2D, and 3D periodicities for dynamic and static problems, including problems with and without a periodic phase shift. The computational complexity of the FFT-PIM is of $O(N \log N)$ for $N$ spatially coinciding sources and observer points. The FFT-PIM uses rapidly converging series representations of the Green's function serving as a kernel in the superposition sum. Based on these representations, the FFT-PIM splits the potential into its near-zone component, which includes a small number of images surrounding the unit cell of interest, and far-zone component, which includes the rest of an infinite number of images. The far-zone component is evaluated by projecting the non-uniform sources onto a sparse uniform grid, performing superposition sums on this sparse grid, and interpolating the potential from the uniform grid to the non-uniform observation points. The near-zone component is evaluated using an FFT-based method, which is adapted to efficiently handle non-uniform source-observer distributions within the periodic unit cell. The FFT-PIM can be used for a broad range of applications, such as periodic problems involving integral equations in computational electromagnetic and acoustic, micromagnetic solvers, and density functional theory solvers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. R. J. Mailloux, Phased array antenna handbook. Artech house, 2017.
  2. D. Kalkstein and P. Soven, “A green’s function theory of surface states,” Surface Science, vol. 26, no. 1, pp. 85–99, 1971.
  3. Y. K. Sirenko and S. Strom, “Modern theory of gratings,” Resonant Scattering: Analysis Techniques and Phenomena, 2010.
  4. S. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielect waveguides,” IEEE transactions on microwave theory and techniques, vol. 23, no. 1, pp. 123–133, 1975.
  5. L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” Journal of Computational Physics, vol. 73, no. 2, pp. 325–348, 1987.
  6. A. D. Baczewski, D. L. Dault, and B. Shanker, “Accelerated cartesian expansions for the rapid solution of periodic multiscale problems,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 9, pp. 4281–4290, 2012.
  7. W. Hackbusch and B. N. Khoromskij, “A sparse h-matrix arithmetic. part ii: application to multi-dimensional problems,” Computing, vol. 64, pp. 21–47, 2000.
  8. A. Boag, E. Michielssen, and A. Brandt, “Nonuniform polar grid algorithm for fast field evaluation,” IEEE Antennas and Wireless Propagation Letters, vol. 1, pp. 142–145, 2002.
  9. S. Li, B. Livshitz, and V. Lomakin, “Fast evaluation of helmholtz potential on graphics processing units (gpus),” Journal of Computational Physics, vol. 229, no. 22, pp. 8463–8483, 2010.
  10. J. Meng, A. Boag, V. Lomakin, and E. Michielssen, “A multilevel cartesian non-uniform grid time domain algorithm,” Journal of Computational Physics, vol. 229, no. 22, pp. 8430–8444, 2010.
  11. B. Livshitz, A. Boag, H. N. Bertram, and V. Lomakin, “Nonuniform grid algorithm for fast calculation of magnetostatic interactions in micromagnetics,” Journal of Applied Physics, vol. 105, p. 07D541, 03 2009.
  12. C. Liu, K. Aygün, and A. E. Yılmaz, “A parallel fft-accelerated layered-medium integral-equation solver for electronic packages,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 33, no. 2, p. e2684, 2020. e2684 JNM-19-0067.R1.
  13. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Aim: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems,” Radio Science, vol. 31, no. 5, pp. 1225–1251, 1996.
  14. J. Phillips and J. White, “A precorrected-fft method for electrostatic analysis of complicated 3-d structures,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no. 10, pp. 1059–1072, 1997.
  15. F. Capolino, D. Wilton, and W. Johnson, “Efficient computation of the 3d green’s function for the helmholtz operator for a linear array of point sources using the ewald method,” Journal of Computational Physics, vol. 223, no. 1, pp. 250–261, 2007.
  16. S. Li, D. A. Van Orden, and V. Lomakin, “Fast periodic interpolation method for periodic unit cell problems,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 12, pp. 4005–4014, 2010.
  17. D. Van Orden and V. Lomakin, “Rapidly convergent representations for 2d and 3d green’s functions for a linear periodic array of dipole sources,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 7, pp. 1973–1984, 2009.
  18. Z. Hu, “Infinite boundary terms of ewald sums and pairwise interactions for electrostatics in bulk and at interfaces,” Journal of Chemical Theory and Computation, vol. 10, no. 12, pp. 5254–5264, 2014. PMID: 26583209.
  19. S. L. Marshall, “A periodic green function for calculation of coloumbic lattice potentials,” Journal of Physics: Condensed Matter, vol. 12, p. 4575, may 2000.
  20. K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, “Periodic boundary conditions for demagnetization interactions in micromagnetic simulations,” Journal of Physics D: Applied Physics, vol. 41, p. 175005, aug 2008.
  21. F. Bruckner, A. Ducevic, P. Heistracher, C. Abert, and D. Suess, “Strayfield calculation for micromagnetic simulations using true periodic boundary conditions,” Scientific Reports, vol. 11, p. 9202, Apr 2021.
  22. R. Chang, S. Li, M. V. Lubarda, B. Livshitz, and V. Lomakin, “FastMag: Fast micromagnetic simulator for complex magnetic structures (invited),” Journal of Applied Physics, vol. 109, p. 07D358, 04 2011.
  23. A. Bagnérés‐Viallix and P. Baras, “On a method to calculate the demagnetizing field in a micromagnetic structure,” Journal of Applied Physics, vol. 69, pp. 4599–4601, 04 1991.
  24. J. Stöhr and H. C. Siegmann, “Magnetism,” Solid-State Sciences. Springer, Berlin, Heidelberg, vol. 5, p. 236, 2006.
  25. S. Li, R. Chang, A. Boag, and V. Lomakin, “Fast electromagnetic integral-equation solvers on graphics processing units,” IEEE Antennas and Propagation Magazine, vol. 54, no. 5, pp. 71–87, 2012.
  26. T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth, and J. Towns, “Access: Advancing innovation: Nsf’s advanced cyberinfrastructure coordination ecosystem: Services & support,” in Practice and Experience in Advanced Research Computing, PEARC ’23, (New York, NY, USA), p. 173–176, Association for Computing Machinery, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com