Entanglement-magic separation in hybrid quantum circuits (2312.02039v2)
Abstract: Magic describes the distance of a quantum state to its closest stabilizer state. It is -- like entanglement -- a necessary resource for a potential quantum advantage over classical computing. We study magic, quantified by stabilizer entropy, in a hybrid quantum circuit with projective measurements and a controlled injection of non-Clifford resources. We discover a phase transition between a (sub)-extensive and area law scaling of magic controlled by the rate of measurements. The same circuit also exhibits a phase transition in entanglement that appears, however, at a different critical measurement rate. This mechanism shows how, from the viewpoint of a potential quantum advantage, hybrid circuits can host multiple distinct transitions where not only entanglement, but also other non-linear properties of the density matrix come into play.
- D. Gottesman, The Heisenberg Representation of Quantum Computers (1998a), arXiv:quant-ph/9807006 .
- S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Phys. Rev. A 70, 052328 (2004).
- M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information, 2nd ed. (Cambridge University Press, Cambridge, 2010).
- D. Gottesman, Class of quantum error-correcting codes saturating the quantum hamming bound, Phys. Rev. A 54, 1862 (1996).
- D. Gottesman, Stabilizer codes and quantum error correction (1997), arXiv:quant-ph/9705052 .
- D. Gottesman, Theory of fault-tolerant quantum computation, Phys. Rev. A 57, 127 (1998b).
- S. Bravyi and A. Kitaev, Universal quantum computation with ideal clifford gates and noisy ancillas, Phys. Rev. A 71, 022316 (2005).
- E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
- Z.-W. Liu and A. Winter, Many-body quantum magic, PRX Quantum 3, 020333 (2022).
- E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549, 172 (2017).
- P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.: Theory Exp. 2004 (06), P06002.
- S. Popescu, A. J. Short, and A. Winter, Entanglement and the foundations of statistical mechanics, Nat. Phys. 2, 754 (2006).
- P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, J. High Energy Phys. 2007 (09), 120.
- N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rep. 646, 1 (2016).
- A. C. Potter and R. Vasseur, Entanglement dynamics in hybrid quantum circuits, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, edited by A. Bayat, S. Bose, and H. Johannesson (Springer International Publishing, Cham, 2022) pp. 211–249.
- B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019).
- Y. Li, X. Chen, and M. P. A. Fisher, Quantum zeno effect and the many-body entanglement transition, Phys. Rev. B 98, 205136 (2018).
- Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100, 134306 (2019).
- P. Sierant and X. Turkeshi, Universal Behavior beyond Multifractality of Wave Functions at Measurement-Induced Phase Transitions, Phys. Rev. Lett. 128, 130605 (2022).
- M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10, 041020 (2020).
- X. Turkeshi and P. Sierant, Error-resilience phase transitions in encoding-decoding quantum circuits (2023), arXiv:2308.06321 .
- M. Howard and E. Campbell, Application of a resource theory for magic states to fault-tolerant quantum computing, Phys. Rev. Lett. 118, 090501 (2017).
- M. Heinrich and D. Gross, Robustness of magic and symmetries of the stabiliser polytope, Quantum 3, 132 (2019).
- X. Wang, M. M. Wilde, and Y. Su, Quantifying the magic of quantum channels, New Journal of Physics 21, 103002 (2019).
- K. Bu and D. E. Koh, Efficient classical simulation of clifford circuits with nonstabilizer input states, Phys. Rev. Lett. 123, 170502 (2019).
- S. Sarkar, C. Mukhopadhyay, and A. Bayat, Characterization of an operational quantum resource in a critical many-body system, New J. Phys. 22, 083077 (2020).
- J. Jiang and X. Wang, Lower bound for the t𝑡titalic_t count via unitary stabilizer nullity, Phys. Rev. Appl. 19, 034052 (2023).
- L. Leone, S. F. E. Oliviero, and A. Hamma, Stabilizer rényi entropy, Phys. Rev. Lett. 128, 050402 (2022).
- T. Haug and L. Piroli, Stabilizer entropies and nonstabilizerness monotones, Quantum 7, 1092 (2023a).
- K. Bu, W. Gu, and A. Jaffe, Quantum entropy and central limit theorem, Proc. Natl. Acad. Sci. U.S.A. 120, e2304589120 (2023a).
- X. Turkeshi, M. Schirò, and P. Sierant, Measuring nonstabilizerness via multifractal flatness, Phys. Rev. A 108, 042408 (2023).
- K. Bu, W. Gu, and A. Jaffe, Stabilizer Testing and Magic Entropy (2023b), arXiv:2306.09292 .
- T. Haug and L. Piroli, Quantifying nonstabilizerness of matrix product states, Phys. Rev. B 107, 035148 (2023b).
- G. Lami and M. Collura, Quantum magic via perfect sampling of matrix product states (2023), arXiv:2303.05536 .
- G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Phys. Rev. Lett. 93, 040502 (2004).
- M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Phys. Codebases , 4 (2022).
- D. L. Hahs-Vaughn and R. Lomax, An Introduction to Statistical Concepts, 4th ed. (Routledge, New York, 2020).
- M. Bejan, C. McLauchlan, and B. Béri, Dynamical magic transitions in monitored clifford+t circuits (2023), arXiv:2312.00132 .