Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on the 2-Colored Rectilinear Crossing Number of Random Point Sets in the Unit Square (2312.01935v1)

Published 4 Dec 2023 in math.CO and cs.CG

Abstract: Let $S$ be a set of four points chosen independently, uniformly at random from a square. Join every pair of points of $S$ with a straight line segment. Color these edges red if they have positive slope and blue, otherwise. We show that the probability that $S$ defines a pair of crossing edges of the same color is equal to $1/4$. This is connected to a recent result of Aichholzer et al. [GD 2019] who showed that by 2-colouring the edges of a geometric graph and counting monochromatic crossings instead of crossings, the number of crossings can be more than halfed. Our result shows that for the described random drawings, there is a coloring of the edges such that the number of monochromatic crossings is in expectation $\frac{1}{2}-\frac{7}{50}$ of the total number of crossings.

Summary

We haven't generated a summary for this paper yet.