Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A simulation method for the wetting dynamics of liquid droplets on deformable membranes (2312.01817v2)

Published 4 Dec 2023 in cond-mat.soft, cs.CE, physics.bio-ph, physics.comp-ph, and q-bio.SC

Abstract: Biological cells utilize membranes and liquid-like droplets, known as biomolecular condensates, to structure their interior. The interaction of droplets and membranes, despite being involved in several key biological processes, is so far little understood. Here, we present a first numerical method to simulate the continuum dynamics of droplets interacting with deformable membranes via wetting. The method combines the advantages of the phase-field method for multi-phase flow simulation and the arbitrary Lagrangian-Eulerian (ALE) method for an explicit description of the elastic surface. The model is thermodynamically consistent, coupling bulk hydrodynamics with capillary forces, as well as bending, tension, and stretching of a thin membrane. The method is validated by comparing simulations for single droplets to theoretical results of shape equations, and its capabilities are illustrated in 2D and 3D axisymmetric scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. doi:10.1126/science.aaf4382. URL https://www.science.org/doi/abs/10.1126/science.aaf4382
  2. doi:https://doi.org/10.1016/j.devcel.2020.06.033. URL https://www.sciencedirect.com/science/article/pii/S1534580720305414
  3. doi:10.1201/9781315152516-5.
  4. doi:https://doi.org/10.1016/j.cis.2022.102613. URL https://www.sciencedirect.com/science/article/pii/S000186862200015X
  5. arXiv:https://pubs.aip.org/aip/jcp/article-pdf/28/2/258/11106115/258_1_online.pdf, doi:10.1063/1.1744102. URL https://doi.org/10.1063/1.1744102
  6. arXiv:https://academic.oup.com/book/0/chapter/203839271/chapter-pdf/45109484/oso-9780198789352-chapter-10.pdf, doi:10.1093/oso/9780198789352.003.0010. URL https://doi.org/10.1093/oso/9780198789352.003.0010
  7. doi:10.1016/bs.hna.2019.05.002.
  8. doi:10.1039/C1SM05499F.
  9. doi:10.1209/0295-5075/ac6ca6. URL https://dx.doi.org/10.1209/0295-5075/ac6ca6
  10. arXiv:https://doi.org/10.1021/jacs.2c04096, doi:10.1021/jacs.2c04096. URL https://doi.org/10.1021/jacs.2c04096
  11. doi:https://doi.org/10.1016/j.bpj.2012.02.013. URL https://www.sciencedirect.com/science/article/pii/S0006349512002147
  12. doi:10.1103/PhysRevLett.103.238103.
  13. doi:10.1098/rstl.1805.0005.
  14. doi:10.1103/PhysRevE.53.2670. URL https://link.aps.org/doi/10.1103/PhysRevE.53.2670
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com