Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Q-learning for optimal dynamic treatment regimes with nonignorable missing covariates (2312.01735v5)

Published 4 Dec 2023 in stat.ME

Abstract: Dynamic treatment regimes (DTRs) formalize medical decision-making as a sequence of rules for different stages, mapping patient-level information to recommended treatments. In practice, estimating an optimal DTR using observational data from electronic medical record (EMR) databases can be complicated by nonignorable missing covariates resulting from informative monitoring of patients. Since complete case analysis can provide consistent estimation of outcome model parameters under the assumption of outcome-independent missingness, Q-learning is a natural approach to accommodating nonignorable missing covariates. However, the backward induction algorithm used in Q-learning can introduce challenges, as nonignorable missing covariates at later stages can result in nonignorable missing pseudo-outcomes at earlier stages, leading to suboptimal DTRs, even if the longitudinal outcome variables are fully observed. To address this unique missing data problem in DTR settings, we propose two weighted Q-learning approaches where inverse probability weights for missingness of the pseudo-outcomes are obtained through estimating equations with valid nonresponse instrumental variables or sensitivity analysis. The asymptotic properties of the weighted Q-learning estimators are derived, and the finite-sample performance of the proposed methods is evaluated and compared with alternative methods through extensive simulation studies. Using EMR data from the Medical Information Mart for Intensive Care database, we apply the proposed methods to investigate the optimal fluid strategy for sepsis patients in intensive care units.

Summary

We haven't generated a summary for this paper yet.