Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal dividend payout with path-dependent drawdown constraint (2312.01668v1)

Published 4 Dec 2023 in q-fin.MF, math.OC, and q-fin.PM

Abstract: This paper studies an optimal dividend payout problem with drawdown constraint in a Brownian motion model, where the dividend payout rate must be no less than a fixed proportion of its historical running maximum. It is a stochastic control problem, where the admissible control depends on its past values, thus is path-dependent. The related Hamilton-Jacobi-BeLLMan equation turns out to be a new type of two-dimensional variational inequality with gradient constraint, which has only been studied by viscosity solution technique in the literature. In this paper, we use delicate PDE methods to obtain a strong solution. Different from the viscosity solution, based on our solution, we succeed in deriving an optimal feedback payout strategy, which is expressed in terms of two free boundaries and the running maximum surplus process. Furthermore, we have obtained many properties of the value function and the free boundaries such as the boundedness, continuity etc. Numerical examples are presented as well to verify our theoretical results and give some new but not proved financial insights.

Citations (1)

Summary

We haven't generated a summary for this paper yet.