Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean Estimation and Linear Regression (2312.01547v1)

Published 4 Dec 2023 in cs.DS, cs.LG, and stat.ML

Abstract: We study the fundamental problems of Gaussian mean estimation and linear regression with Gaussian covariates in the presence of Huber contamination. Our main contribution is the design of the first sample near-optimal and almost linear-time algorithms with optimal error guarantees for both of these problems. Specifically, for Gaussian robust mean estimation on $\mathbb{R}d$ with contamination parameter $\epsilon \in (0, \epsilon_0)$ for a small absolute constant $\epsilon_0$, we give an algorithm with sample complexity $n = \tilde{O}(d/\epsilon2)$ and almost linear runtime that approximates the target mean within $\ell_2$-error $O(\epsilon)$. This improves on prior work that achieved this error guarantee with polynomially suboptimal sample and time complexity. For robust linear regression, we give the first algorithm with sample complexity $n = \tilde{O}(d/\epsilon2)$ and almost linear runtime that approximates the target regressor within $\ell_2$-error $O(\epsilon)$. This is the first polynomial sample and time algorithm achieving the optimal error guarantee, answering an open question in the literature. At the technical level, we develop a methodology that yields almost-linear time algorithms for multi-directional filtering that may be of broader interest.

Citations (1)

Summary

We haven't generated a summary for this paper yet.