Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Decentralized Task Offloading and Resource Allocation in User-Centric Mobile Edge Computing (2312.01499v1)

Published 3 Dec 2023 in eess.SY, cs.DC, cs.SY, and eess.SP

Abstract: In the traditional cellular-based mobile edge computing (MEC), users at the edge of the cell are prone to suffer severe inter-cell interference and signal attenuation, leading to low throughput even transmission interruptions. Such edge effect severely obstructs offloading of tasks to MEC servers. To address this issue, we propose user-centric mobile edge computing (UCMEC), a novel MEC architecture integrating user-centric transmission, which can ensure high throughput and reliable communication for task offloading. Then, we formulate an optimization problem with joint consideration of task offloading, power control, and computing resource allocation in UCMEC, aiming at obtaining the optimal performance in terms of long-term average total delay. To solve the intractable problem, we propose two decentralized joint optimization schemes based on multi-agent deep reinforcement learning (MADRL) and convex optimization, which consider both cooperation and non-cooperation among network nodes. Simulation results demonstrate that the proposed schemes in UCMEC can significantly improve the uplink transmission rate by at most 343.56% and reduce the long-term average total delay by at most 45.57% compared to traditional cellular-based MEC.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. W. Shi et al., “Edge computing: Vision and challenges,” IEEE Internet Things J., vol. 3, pp. 1–1, Oct. 2016.
  2. S. Mukherjee et al., “Edge computing-enabled cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. PP, pp. 1–1, Jan. 2020.
  3. L. Qin et al., “When the user-centric network meets mobile edge computing: Challenges and optimization,” IEEE Commun. Mag., vol. 61, no. 1, pp. 114–120, 2023.
  4. H. A. Ammar et al., “Distributed resource allocation optimization for user-centric cell-free MIMO networks,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3099–3115, Oct 2022.
  5. H. Lu et al., “Joint power control and passive beamforming in reconfigurable intelligent surface assisted user-centric networks,” IEEE Trans. Commun., vol. 70, no. 7, pp. 4852–4866, Jul. 2022.
  6. M. Ibrahim et al., “Uplink performance of mmwave-fronthaul cell-free massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 1536–1548, Feb. 2022.
  7. H. A. Ammar et al., “User-centric cell-free massive MIMO networks: A survey of opportunities, challenges and solutions,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 611–652, 2022.
  8. Z. Qin et al., “AoI-aware scheduling for air-ground collaborative mobile edge computing,” IEEE Trans. Wireless Commun., vol. 22, no. 5, pp. 2989–3005, May 2023.
  9. P. A. Apostolopoulos et al., “Data offloading in UAV-assisted multi-access edge computing systems under resource uncertainty,” Trans. Mobile Comput., vol. 22, no. 1, pp. 175–190, Jan. 2023.
  10. L. P. Qian et al., “Energy-efficient multi-access mobile edge computing with secrecy provisioning,” Trans. Mobile Comput., vol. 22, no. 1, pp. 237–252, Jan. 2023.
  11. T. Liu et al., “A near-optimal approach for online task offloading and resource allocation in edge-cloud orchestrated computing,” Trans. Mobile Comput., vol. 21, no. 8, pp. 2687–2700, Aug. 2022.
  12. R. Zhou et al., “Online task offloading for 5G small cell networks,” Trans. Mobile Comput., vol. 21, no. 6, pp. 2103–2115, Jun. 2022.
  13. X. Li et al., “Joint sensing, communication, and computation in mobile crowdsensing enabled edge networks,” IEEE Trans. Wireless Commun., vol. 22, no. 4, pp. 2818–2832, Apr. 2023.
  14. H. Zhang et al., “User-centric cell-free massive MIMO system for indoor industrial networks,” IEEE Trans. Commun., vol. 70, no. 11, pp. 7644–7655, Nov. 2022.
  15. U. Demirhan et al., “Enabling cell-free massive MIMO systems with wireless millimeter wave fronthaul,” IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 9482–9496, Nov. 2022.
  16. R. Pinto Antonioli et al., “On the energy efficiency of cell-free systems with limited fronthauls: Is coherent transmission always the best alternative?” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8729–8743, Oct. 2022.
  17. S. Liu, P. Cheng, Z. Chen, W. Xiang, B. Vucetic, and Y. Li, “Contextual user-centric task offloading for mobile edge computing in ultra-dense network,” IEEE Transactions on Mobile Computing, vol. 22, no. 9, pp. 5092–5108, 2023.
  18. X. Deng, Z. Sun, D. Li, J. Luo, and S. Wan, “User-centric computation offloading for edge computing,” IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12 559–12 568, 2021.
  19. M. Ke, Z. Gao, Y. Wu, X. Gao, and K.-K. Wong, “Massive access in cell-free massive MIMO-based internet of things: Cloud computing and edge computing paradigms,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 3, pp. 756–772, 2021.
  20. F. D. Tilahun, A. T. Abebe, and C. G. Kang, “Drl-based distributed resource allocation for edge computing in cell-free massive MIMO network,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 3845–3850.
  21. H. A. Ammar et al., “Analysis and design of distributed MIMO networks with a wireless fronthaul,” IEEE Trans. Commun., vol. 70, no. 2, pp. 980–998, Feb. 2022.
  22. H. Q. Ngo et al., “Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.
  23. S. Buzzi et al., “User-centric 5G cellular networks: Resource allocation and comparison with the cell-free massive MIMO approach,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1250–1264, 2020.
  24. Y. Wang et al., “Channel estimation in irs-enhanced mmwave system with super-resolution network,” IEEE Commun. Lett., vol. 25, no. 8, pp. 2599–2603, Aug. 2021.
  25. T. Zhang et al., “On the performance of cache-enabled hybrid wireless networks,” IEEE Trans. Commun., vol. 69, no. 3, pp. 1818–1834, Mar. 2021.
  26. S. Kusaladharma et al., “Outage performance and average rate for large-scale millimeter-wave NOMA networks,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1280–1291, Feb. 2020.
  27. J. G. Andrews et al., “Modeling and analyzing millimeter wave cellular systems,” IEEE Trans. Commun., vol. 65, no. 1, pp. 403–430, Jan. 2017.
  28. Y. Shi et al., “Uplink performance enhancement through adaptive multi-association and decoupling in uhf-mmwave hybrid networks,” IEEE Trans. Veh. Technol., vol. 68, no. 10, pp. 9735–9746, Oct. 2019.
  29. G. Yang et al., “Low-latency millimeter-wave communications: Traffic dispersion or network densification?” IEEE Trans. Commun., vol. 66, no. 8, pp. 3526–3539, Aug. 2018.
  30. D. Guo et al., “Joint optimization of handover control and power allocation based on multi-agent deep reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13 124–13 138, Nov. 2020.
  31. M. Di Renzo, “Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no. 9, pp. 5038–5057, Sep. 2015.
  32. K. Han et al., “The connectivity of millimeter wave networks in urban environments modeled using random lattices,” IEEE Trans. Wireless Commun., vol. 17, no. 5, pp. 3357–3372, May 2018.
  33. Z. Gu et al., “Reliability enhancement for vr delivery in mobile-edge empowered dual-connectivity sub-6 ghz and mmwave hetnets,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2210–2226, Apr. 2022.
  34. P. Agheli et al., “Cognitive rf-fso fronthaul assignment in cell-free and user-centric mMIMO networks,” Mar. 2021. [Online]. Available: https://arxiv.org/abs/2011.06680
  35. Z. Chen et al., “Dynamic resource allocation in co-located and cell-free massive MIMO,” IEEE Trans. Green Commun. Netw., vol. PP, pp. 1–1, Nov. 2019.
  36. S. Buzzi et al., “Cell-free massive MIMO: User-centric approach,” IEEE Trans. Wireless Commun., vol. 6, no. 6, pp. 706–709, Dec. 2017.
  37. M. Guenach et al., “Joint power control and access point scheduling in fronthaul-constrained uplink cell-free massive MIMO systems,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2709–2722, Apr. 2021.
  38. H. Lin et al., “A simple random access scheme with multilevel power allocation,” IEEE Commun. Lett., vol. 19, no. 12, pp. 2118–2121, 2015.
  39. M. Liu et al., “Computation offloading and content caching in wireless blockchain networks with mobile edge computing,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 11 008–11 021, Nov. 2018.
  40. S. Diamond et al., “CVXPY: A Python-embedded modeling language for convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.
  41. Y. Zhan et al., “A deep reinforcement learning based offloading game in edge computing,” IEEE Trans. Comput., vol. PP, pp. 1–1, Jan. 2020.
  42. C. S. de Witt et al., “Is independent learning all you need in the starcraft multi-agent challenge?” Nov. 2020.
  43. J. Schulman et al., “Proximal policy optimization algorithms,” Aug. 2017.
  44. S. Li et al., “Deep reinforcement learning and game theory for computation offloading in dynamic edge computing markets,” IEEE Access, vol. PP, pp. 1–1, Aug. 2021.
  45. J. Schulman et al., “High-dimensional continuous control using generalized advantage estimation,” 2015. [Online]. Available: https://arxiv.org/abs/1506.02438
  46. ——, “Proximal policy optimization algorithms,” Jul. 2017.
  47. Q. Cui et al., “Multi-agent deep reinforcement learning-based interdependent computing for mobile edge computing-assisted robot teams,” IEEE Trans. Veh. Technol., vol. 72, no. 5, pp. 6599–6610, May 2023.
  48. C. Yu et al., “The surprising effectiveness of ppo in cooperative, multi-agent games,” 2021. [Online]. Available: https://arxiv.org/abs/2103.01955
  49. K. Zhang et al., “Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks,” IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 1405–1413, Feb. 2022.
  50. R. Lowe et al., “Multi-agent actor-critic for mixed cooperative-competitive environments,” 2017. [Online]. Available: https://arxiv.org/abs/1706.02275
  51. Z. Chen et al., “NOMA-based multi-user mobile edge computation offloading via cooperative multi-agent deep reinforcement learning,” IEEE Trans. on Cogn. Commun. Netw., vol. 8, no. 1, pp. 350–364, Mar. 2022.
  52. A. Tampuu et al., “Multiagent cooperation and competition with deep reinforcement learning,” Nov. 2015.
  53. Z. Cao et al., “Multiagent deep reinforcement learning for joint multichannel access and task offloading of mobile-edge computing in industry 4.0,” IEEE Internet Things J., vol. 7, no. 7, pp. 6201–6213, Jul. 2020.

Summary

We haven't generated a summary for this paper yet.