Papers
Topics
Authors
Recent
2000 character limit reached

Automatic Report Generation for Histopathology images using pre-trained Vision Transformers and BERT

Published 3 Dec 2023 in cs.CV | (2312.01435v2)

Abstract: Deep learning for histopathology has been successfully used for disease classification, image segmentation and more. However, combining image and text modalities using current state-of-the-art (SOTA) methods has been a challenge due to the high resolution of histopathology images. Automatic report generation for histopathology images is one such challenge. In this work, we show that using an existing pre-trained Vision Transformer (ViT) to encode 4096x4096 sized patches of the Whole Slide Image (WSI) and a pre-trained Bidirectional Encoder Representations from Transformers (BERT) model for language modeling-based decoder for report generation, we can build a performant and portable report generation mechanism that takes into account the whole high resolution image. Our method allows us to not only generate and evaluate captions that describe the image, but also helps us classify the image into tissue types and the gender of the patient as well. Our best performing model achieves a 89.52% accuracy in Tissue Type classification with a BLEU-4 score of 0.12 in our caption generation task.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.