Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Report Generation for Histopathology images using pre-trained Vision Transformers and BERT (2312.01435v2)

Published 3 Dec 2023 in cs.CV

Abstract: Deep learning for histopathology has been successfully used for disease classification, image segmentation and more. However, combining image and text modalities using current state-of-the-art (SOTA) methods has been a challenge due to the high resolution of histopathology images. Automatic report generation for histopathology images is one such challenge. In this work, we show that using an existing pre-trained Vision Transformer (ViT) to encode 4096x4096 sized patches of the Whole Slide Image (WSI) and a pre-trained Bidirectional Encoder Representations from Transformers (BERT) model for LLMing-based decoder for report generation, we can build a performant and portable report generation mechanism that takes into account the whole high resolution image. Our method allows us to not only generate and evaluate captions that describe the image, but also helps us classify the image into tissue types and the gender of the patient as well. Our best performing model achieves a 89.52% accuracy in Tissue Type classification with a BLEU-4 score of 0.12 in our caption generation task.

Citations (4)

Summary

We haven't generated a summary for this paper yet.