Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-one-dimensional hydrogen bonding in nanoconfined ice (2312.01340v2)

Published 3 Dec 2023 in cond-mat.stat-mech, cond-mat.mes-hall, cond-mat.mtrl-sci, and cond-mat.soft

Abstract: The Bernal-Fowler ice rules stipulate that each water molecule in an ice crystal should form four hydrogen bonds. However, in extreme or constrained conditions, the arrangement of water molecules deviates from conventional ice rules, resulting in properties significantly different from bulk water. In this study, we employ machine learning-driven first-principles simulations to identify a new stabilization mechanism in nanoconfined ice phases beyond conventional ice rules. Instead of forming four hydrogen bonds, nanoconfined crystalline ice can form a quasi-one-dimensional hydrogen-bonded structure that exhibits only two hydrogen bonds per water molecule. These structures consist of strongly hydrogen-bonded linear chains of water molecules that zig-zag along one dimension, stabilized by van der Waals interactions that stack these chains along the other dimension. The unusual interplay of hydrogen bonding and van der Waals interactions in nanoconfined ice results in atypical proton behavior such as potential ferroelectric behavior, low dielectric response, and long-range proton dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, Microfabrication Inside Capillaries Using Multiphase Laminar Flow Patterning, Science 285, 83 (1999).
  2. A. Kalra, S. Garde, and G. Hummer, Osmotic water transport through carbon nanotube membranes, Proceedings of the National Academy of Sciences 100, 10175 (2003).
  3. B. Coquinot, L. Bocquet, and N. Kavokine, Quantum feedback at the solid-liquid interface: Flow-induced electronic current and its negative contribution to friction, Physical Review X 13, 011019 (2023).
  4. T. M. Truskett, P. G. Debenedetti, and S. Torquato, Thermodynamic implications of confinement for a waterlike fluid, The Journal of Chemical Physics 114, 2401 (2001).
  5. F. Corsetti, P. Matthews, and E. Artacho, Structural and configurational properties of nanoconfined monolayer ice from first principles, Scientific Reports 6, 18651 (2016).
  6. J. Behler, Constructing high-dimensional neural network potentials: A tutorial review, International Journal of Quantum Chemistry 115, 1032 (2015).
  7. C. Schran, K. Brezina, and O. Marsalek, Committee neural network potentials control generalization errors and enable active learning, The Journal of Chemical Physics 153, 104105 (2020).
  8. L. Pauling, The nature of the chemical bond. application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules, Journal of the American Chemical Society 53, 1367 (1931).
  9. J. D. Bernal and R. H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, The Journal of Chemical Physics 1, 515 (1933).
  10. G. Algara-Siller, O. Lehtinen, and U. Kaiser, Algara-Siller et al . reply, Nature 528, E3 (2015a).
  11. A. A. Balandin, R. K. Lake, and T. T. Salguero, One-dimensional van der waals materials—advent of a new research field, Applied Physics Letters 121, 10.1063/5.0108414 (2022).
  12. A. Luzar and D. Chandler, Hydrogen-bond kinetics in liquid water, Nature 379, 55 (1996).
  13. Y. Zhang and W. Yang, Comment on “Generalized Gradient Approximation Made Simple”, Physical Review Letters 80, 890 (1998).
  14. O. Marsalek and T. E. Markland, Quantum Dynamics and Spectroscopy of Ab Initio Liquid Water: The Interplay of Nuclear and Electronic Quantum Effects, The Journal of Physical Chemistry Letters 8, 1545 (2017).
  15. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement, Journal of the American Chemical Society 57, 2680 (1935).
  16. P. Schienbein and D. Marx, Supercritical Water is not Hydrogen Bonded, Angewandte Chemie International Edition 59, 18578 (2020).
  17. J. Michl and E. C. H. Sykes, Molecular rotors and motors: recent advances and future challenges, ACS Nano 3, 1042 (2009).
  18. S. Horiuchi and Y. Tokura, Organic ferroelectrics, Nature Materials 7, 357 (2008).
  19. C. Drechsel-Grau and D. Marx, Quantum Simulation of Collective Proton Tunneling in Hexagonal Ice Crystals, Physical Review Letters 112, 148302 (2014).
  20. K. T. Wikfeldt and A. Michaelides, Communication: Ab initio simulations of hydrogen-bonded ferroelectrics: Collective tunneling and the origin of geometrical isotope effects, The Journal of Chemical Physics 140, 10.1063/1.4862740 (2014).
  21. P. Ravindra, Phase Transitions in Nano-confined Water, Master’s thesis, University of Cambridge (2022).
  22. A. Singraber, J. Behler, and C. Dellago, Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials, Journal of Chemical Theory and Computation 15, 1827 (2019).
  23. G. J. Martyna, A. Hughes, and M. E. Tuckerman, Molecular dynamics algorithms for path integrals at constant pressure, The Journal of Chemical Physics 110, 3275 (1999), publisher: American Institute of Physics.
  24. M. Ceriotti, G. Bussi, and M. Parrinello, Langevin Equation with Colored Noise for Constant-Temperature Molecular Dynamics Simulations, Physical Review Letters 102, 020601 (2009).
  25. G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics 126, 014101 (2007).
  26. B. Leimkuhler and C. Matthews, Robust and efficient configurational molecular sampling via Langevin dynamics, The Journal of Chemical Physics 138, 174102 (2013).
  27. M. Ceriotti and D. E. Manolopoulos, Efficient First-Principles Calculation of the Quantum Kinetic Energy and Momentum Distribution of Nuclei, Physical Review Letters 109, 100604 (2012).
  28. S. Habershon, T. E. Markland, and D. E. Manolopoulos, Competing quantum effects in the dynamics of a flexible water model, The Journal of Chemical Physics 131, 024501 (2009).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com