Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Frobenious distances from projections to an idempotent matrix (2312.01233v2)

Published 2 Dec 2023 in math.FA and math.OA

Abstract: For each pair of matrices $A$ and $B$ with the same order, let $|A-B|_F$ denote their Frobenius distance. This paper deals mainly with the Frobenius distances from projections to an idempotent matrix. For every idempotent $Q\in \mathbb{C}{n\times n}$, a projection $m(Q)$ called the matched projection can be induced. It is proved that $m(Q)$ is the unique projection whose Frobenius distance away from $Q$ takes the minimum value among all the Frobenius distances from projections to $Q$, while $I_n-m(Q)$ is the unique projection whose Frobenius distance away from $Q$ takes the maximum value. Furthermore, it is proved that for every number $\alpha$ between the minimum value and the maximum value, there exists a projection $P$ whose Frobenius distance away from $Q$ takes the value $\alpha$. Based on the above characterization of the minimum distance, some Frobenius norm upper bounds and lower bounds of $|P-Q|_F$ are derived under the condition of $PQ=Q$ on a projection $P$ and an idempotent $Q$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.