Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Database System for State Management in Stateful Network Service Function Chains [Vision] (2312.01066v1)

Published 2 Dec 2023 in cs.NI and cs.DB

Abstract: Network Function Virtualization (NFV) heralds a transformative era in network function deployment, enabling the orchestration of Service Function Chains (SFCs) for delivering complex and dynamic network services. Yet, the development and sustenance of stateful SFCs remain challenging, with intricate demands for usability in SFC development, performance, and execution correctness. In this paper, we present DB4NFV, a database system designed to address these challenges. Central to DB4NFV is the integration of transactional semantics into the entire lifecycle of stateful SFC, a core idea that enhances all aspects of the system. This integration provides an intuitive and well-structured API, which greatly simplifies the development of stateful SFCs. Concurrently, transactional semantics facilitate the optimization of runtime performance by efficiently leveraging modern multicore architectures. Moreover, by encapsulating state operations as transactions, DB4NFV achieves robustness, even at the entire chain level, ensuring reliable operation across varying network conditions. Consequently, DB4NFV marks a substantial forward leap in NFV state management, leveraging transactional semantics to achieve a harmonious blend of usability, efficiency, and robustness, thus facilitating the effective deployment of stateful SFCs in contemporary network infrastructures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, “Network function virtualization: State-of-the-art and research challenges,” IEEE Communications surveys & tutorials, vol. 18, no. 1, pp. 236–262, 2015.
  2. A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A software-defined framework for developing, deploying, and managing network functions,” in Proceedings of the 2016 ACM SIGCOMM Conference, pp. 511–524, 2016.
  3. Z. Meng, J. Bi, H. Wang, C. Sun, and H. Hu, “Micronf: An efficient framework for enabling modularized service chains in nfv,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 8, pp. 1851–1865, 2019.
  4. S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and S. Shenker, “E2: A framework for nfv applications,” in Proceedings of the 25th Symposium on Operating Systems Principles, pp. 121–136, 2015.
  5. S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Split/merge: system support for elastic execution in virtual middleboxes.,” in NSDI, vol. 13, pp. 227–240, 2013.
  6. A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das, and A. Akella, “Opennf: Enabling innovation in network function control,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 163–174, 2014.
  7. S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker, “Elastic scaling of stateful network functions,” in 15th {normal-{\{{USENIX}normal-}\}} Symposium on Networked Systems Design and Implementation ({normal-{\{{NSDI}normal-}\}} 18), pp. 299–312, 2018.
  8. J. Khalid and A. Akella, “Correctness and performance for stateful chained network functions.,” in NSDI, vol. 19, pp. 26–28, 2019.
  9. L. De Carli, R. Sommer, and S. Jha, “Beyond pattern matching: A concurrency model for stateful deep packet inspection,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 1378–1390, 2014.
  10. S. E. Schechter, J. Jung, and A. W. Berger, “Fast detection of scanning worm infections,” in Recent Advances in Intrusion Detection: 7th International Symposium, RAID 2004, Sophia Antipolis, France, September 15-17, 2004. Proceedings 7, pp. 59–81, Springer, 2004.
  11. M. Kaplan, A. Alsudais, E. Keller, and F. Le, “Stateless network functions: Breaking the tight coupling of state and processing,” in Symposium on Networked Systems Design and Implementation, 2017.
  12. P. Naik, A. Kanase, T. Patel, and M. Vutukuru, “Libvnf: Building virtual network functions made easy,” in Proceedings of the ACM Symposium on Cloud Computing, SoCC ’18, (New York, NY, USA), p. 212–224, Association for Computing Machinery, 2018.
  13. M. Pozza, A. Rao, D. F. Lugones, and S. Tarkoma, “Flexstate: Flexible state management of network functions,” IEEE Access, vol. 9, pp. 46837–46850, 2021.
  14. S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high availability framework for middleboxes,” in Proceedings of the 4th annual Symposium on Cloud Computing, pp. 1–15, 2013.
  15. F. B. Carvalho, R. A. Ferreira, Í. Cunha, M. A. Vieira, and M. K. Ramanathan, “Dyssect: Dynamic scaling of stateful network functions,” in IEEE INFOCOM 2022-IEEE Conference on Computer Communications, pp. 1529–1538, IEEE, 2022.
  16. J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco, M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo, et al., “Rollback-recovery for middleboxes,” in Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, pp. 227–240, 2015.
  17. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click modular router,” ACM Transactions on Computer Systems (TOCS), vol. 18, no. 3, pp. 263–297, 2000.
  18. Y. Mao, J. Zhao, S. Zhang, H. Liu, and V. Markl, “Morphstream: Adaptive scheduling for scalable transactional stream processing on multicores,” Proc. ACM Manag. Data, vol. 1, may 2023.

Summary

We haven't generated a summary for this paper yet.