Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint User Association and Resource Allocation for Multi-Cell Networks with Adaptive Semantic Communication (2312.01049v2)

Published 2 Dec 2023 in cs.NI

Abstract: Semantic communication is a promising communication paradigm that utilizes Deep Neural Networks (DNNs) to extract the information relevant to downstream tasks, hence significantly reducing the amount of transmitted data. In current practice, the semantic communication transmitter for a specific task is typically pre-trained and shared by all users. However, due to user heterogeneity, it is desirable to use different transmitters according to the available computational and communication resources of users. In this paper, we first show that it is possible to dynamically adjust the computational and communication overhead of DNN-based transmitters, thereby achieving adaptive semantic communication. After that, we investigate the user association and resource allocation problem in a multi-cell network where users are equipped with adaptive semantic communication transmitters. To solve this problem, we decompose it into three subproblems involving the scheduling of each user, the resource allocation of each base station (BS), and the user association between users and BSs. Then we solve each problem progressively based on the solution of the previous subproblem. The final algorithm can obtain near-optimal solutions in polynomial time. Numerical results show that our algorithm outperforms benchmarks under various situations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, pp. 379–423, 1948. [Online]. Available: http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
  2. J. Bao, P. Basu, M. Dean, C. Partridge, A. Swami, W. Leland, and J. A. Hendler, “Towards a theory of semantic communication,” in 2011 IEEE Network Science Workshop.   IEEE, 2011, pp. 110–117.
  3. Z. Qin, X. Tao, J. Lu, W. Tong, and G. Y. Li, “Semantic communications: Principles and challenges,” arXiv preprint arXiv:2201.01389, 2021.
  4. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 5–41, 2022.
  5. Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews, “User association for load balancing in heterogeneous cellular networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 6, pp. 2706–2716, 2013.
  6. D. Bethanabhotla, O. Y. Bursalioglu, H. C. Papadopoulos, and G. Caire, “Optimal user-cell association for massive mimo wireless networks,” IEEE Transactions on Wireless Communications, vol. 15, no. 3, pp. 1835–1850, 2015.
  7. Q. Ye, O. Y. Bursalioglu, H. C. Papadopoulos, C. Caramanis, and J. G. Andrews, “User association and interference management in massive mimo hetnets,” IEEE Transactions on Communications, vol. 64, no. 5, pp. 2049–2065, 2016.
  8. J. G. Andrews, S. Singh, Q. Ye, X. Lin, and H. S. Dhillon, “An overview of load balancing in hetnets: Old myths and open problems,” IEEE Wireless Communications, vol. 21, no. 2, pp. 18–25, 2014.
  9. D. Liu, L. Wang, Y. Chen, M. Elkashlan, K.-K. Wong, R. Schober, and L. Hanzo, “User association in 5g networks: A survey and an outlook,” IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1018–1044, 2016.
  10. M. Sheng, C. Yang, Y. Zhang, and J. Li, “Zone-based load balancing in lte self-optimizing networks: A game-theoretic approach,” IEEE transactions on vehicular technology, vol. 63, no. 6, pp. 2916–2925, 2013.
  11. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021.
  12. D. Huang, F. Gao, X. Tao, Q. Du, and J. Lu, “Toward semantic communications: Deep learning-based image semantic coding,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 55–71, 2022.
  13. Z. Weng and Z. Qin, “Semantic communication systems for speech transmission,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 8, pp. 2434–2444, 2021.
  14. P. Jiang, C.-K. Wen, S. Jin, and G. Y. Li, “Wireless semantic communications for video conferencing,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 230–244, 2022.
  15. L. Yan, Z. Qin, R. Zhang, Y. Li, and G. Y. Li, “Resource allocation for text semantic communications,” IEEE Wireless Communications Letters, vol. 11, no. 7, pp. 1394–1398, 2022.
  16. ——, “Qoe-aware resource allocation for semantic communication networks,” in GLOBECOM 2022-2022 IEEE Global Communications Conference.   IEEE, 2022, pp. 3272–3277.
  17. Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H. V. Poor, and S. Cui, “Performance optimization for semantic communications: An attention-based reinforcement learning approach,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 9, pp. 2598–2613, 2022.
  18. H. Zhang, H. Wang, Y. Li, K. Long, and A. Nallanathan, “Drl-driven dynamic resource allocation for task-oriented semantic communication,” IEEE Transactions on Communications, 2023.
  19. W. Zhang, Y. Wang, M. Chen, T. Luo, and D. Niyato, “Optimization of image transmission in a cooperative semantic communication networks,” arXiv preprint arXiv:2301.00433, 2023.
  20. C. Liu, C. Guo, Y. Yang, and N. Jiang, “Adaptable semantic compression and resource allocation for task-oriented communications,” arXiv preprint arXiv:2204.08910, 2022.
  21. J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural networks,” in International Conference on Learning Representations, 2019.
  22. J. Yu and T. S. Huang, “Universally slimmable networks and improved training techniques,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 1803–1811.
  23. J. Yu and T. Huang, “Autoslim: Towards one-shot architecture search for channel numbers,” arXiv preprint arXiv:1903.11728, 2019.
  24. H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one network and specialize it for efficient deployment,” in International Conference on Learning Representations, 2020.
  25. M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced cpu energy,” Mobile Computing, pp. 449–471, 1996.
  26. A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power cmos digital design,” IEICE Transactions on Electronics, vol. 75, no. 4, pp. 371–382, 1992.
  27. H. Kim, G. De Veciana, X. Yang, and M. Venkatachalam, “Distributed α𝛼\alphaitalic_α-optimal user association and cell load balancing in wireless networks,” IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 177–190, 2011.
  28. G. Athanasiou, P. C. Weeraddana, C. Fischione, and L. Tassiulas, “Optimizing client association for load balancing and fairness in millimeter-wave wireless networks,” IEEE/ACM Transactions on Networking, vol. 23, no. 3, pp. 836–850, 2014.
  29. W. Saad, Z. Han, R. Zheng, M. Debbah, and H. V. Poor, “A college admissions game for uplink user association in wireless small cell networks,” in IEEE INFOCOM 2014-IEEE Conference on Computer Communications.   IEEE, 2014, pp. 1096–1104.
  30. T. Han and N. Ansari, “A traffic load balancing framework for software-defined radio access networks powered by hybrid energy sources,” IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp. 1038–1051, 2015.
Citations (2)

Summary

We haven't generated a summary for this paper yet.