Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergences for Minimax Optimization Problems over Infinite-Dimensional Spaces Towards Stability in Adversarial Training (2312.00991v1)

Published 2 Dec 2023 in stat.ML, cs.LG, and math.OC

Abstract: Training neural networks that require adversarial optimization, such as generative adversarial networks (GANs) and unsupervised domain adaptations (UDAs), suffers from instability. This instability problem comes from the difficulty of the minimax optimization, and there have been various approaches in GANs and UDAs to overcome this problem. In this study, we tackle this problem theoretically through a functional analysis. Specifically, we show the convergence property of the minimax problem by the gradient descent over the infinite-dimensional spaces of continuous functions and probability measures under certain conditions. Using this setting, we can discuss GANs and UDAs comprehensively, which have been studied independently. In addition, we show that the conditions necessary for the convergence property are interpreted as stabilization techniques of adversarial training such as the spectral normalization and the gradient penalty.

Summary

We haven't generated a summary for this paper yet.