Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics Inspired Criterion for Pruning-Quantization Joint Learning (2312.00851v2)

Published 1 Dec 2023 in cs.LG and cs.CV

Abstract: Pruning-quantization joint learning always facilitates the deployment of deep neural networks (DNNs) on resource-constrained edge devices. However, most existing methods do not jointly learn a global criterion for pruning and quantization in an interpretable way. In this paper, we propose a novel physics inspired criterion for pruning-quantization joint learning (PIC-PQ), which is explored from an analogy we first draw between elasticity dynamics (ED) and model compression (MC). Specifically, derived from Hooke's law in ED, we establish a linear relationship between the filters' importance distribution and the filter property (FP) by a learnable deformation scale in the physics inspired criterion (PIC). Furthermore, we extend PIC with a relative shift variable for a global view. To ensure feasibility and flexibility, available maximum bitwidth and penalty factor are introduced in quantization bitwidth assignment. Experiments on benchmarks of image classification demonstrate that PIC-PQ yields a good trade-off between accuracy and bit-operations (BOPs) compression ratio e.g., 54.96X BOPs compression ratio in ResNet56 on CIFAR10 with 0.10% accuracy drop and 53.24X in ResNet18 on ImageNet with 0.61% accuracy drop). The code will be available at https://github.com/fanxxxxyi/PIC-PQ.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Weiying Xie (31 papers)
  2. Xiaoyi Fan (7 papers)
  3. Xin Zhang (904 papers)
  4. Yunsong Li (41 papers)
  5. Jie Lei (52 papers)
  6. Leyuan Fang (26 papers)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub