Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Networks Enabled Semantic Communications (2312.00740v1)

Published 1 Dec 2023 in cs.IT and math.IT

Abstract: Semantic communication has shown great potential in boosting the effectiveness and reliability of communications. However, its systems to date are mostly enabled by deep learning, which requires demanding computing resources. This article proposes a framework for the computing networks enabled semantic communication system, aiming to offer sufficient computing resources for semantic processing and transmission. Key techniques including semantic sampling and reconstruction, semantic-channel coding, semantic-aware resource allocation and optimization are introduced based on the cloud-edge-end computing coordination. Two use cases are demonstrated to show advantages of the proposed framework. The article concludes with several future research directions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. J. Bao et al., “Towards a theory of semantic communication,” in Proc. IEEE Netw. Sci. Workshop, West Point, NY, USA, Jun. 2011, pp. 110–117.
  2. Z. Qin, X. Tao, J. Lu, W. Tong, and G. Y. Li, “Semantic communications: Principles and challenges,” arXiv preprint arXiv:2201.01389, 2021.
  3. S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and X. Shen, “Distributed artificial intelligence empowered by end-edge-cloud computing: A survey,” IEEE Commun. Surv. Tutor., vol. 25, no. 1, pp. 591–624, 2023.
  4. Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient resource management for federated edge learning with CPU-GPU heterogeneous computing,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7947–7962, 2021.
  5. K. C.-J. Lin, H.-C. Wang, Y.-C. Lai, and Y.-D. Lin, “Communication and computation offloading for multi-RAT mobile edge computing,” IEEE Wireless Commun., vol. 26, no. 6, pp. 180–186, 2019.
  6. Y. Zhan et al., “A deep reinforcement learning based offloading game in edge computing,” IEEE Trans. Comput., vol. 69, no. 6, pp. 883–893, Jun. 2020.
  7. Z. Liu et al., “Post: Parallel offloading of splittable tasks in heterogeneous fog networks,” IEEE Internet Things J., vol. 7, no. 4, pp. 3170–3183, Apr. 2020.
  8. N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-channel coding of text,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018, pp. 2326–2330.
  9. H. Xie et al., “Deep learning enabled semantic communication systems,” IEEE Trans. Signal Process., vol. 69, pp. 2663–2675, Apr. 2021.
  10. H. Xie and Z. Qin, “A lite distributed semantic communication system for Internet of Things,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 142–153, Jan. 2021.
  11. Z. Ji and Z. Qin, “Energy-efficient task offloading for semantic-aware networks,” arXiv preprint arXiv:2301.08376, 2023.
  12. P. Jiang et al., “Wireless semantic communications for video conferencing,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 230–244, Jan. 2023.
  13. H. Zhang et al., “Deep learning-enabled semantic communication systems with task-unaware transmitter and dynamic data,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 170–185, Jan. 2023.
  14. S. Guo et al., “Semantic importance-aware communications using pre-trained language models,” IEEE Commun. Lett., pp. 1–1, Jul. 2023.
  15. H. Seo et al., “Semantics-native communication via contextual reasoning,” IEEE Trans. Cognit. Commun. Netw., vol. 9, no. 3, pp. 604–617, Jun. 2023.
Citations (11)

Summary

We haven't generated a summary for this paper yet.