Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model bias identification for Bayesian calibration of stochastic digital twins of bridges (2312.00664v2)

Published 1 Dec 2023 in cs.CE

Abstract: Simulation-based digital twins must provide accurate, robust and reliable digital representations of their physical counterparts. Quantifying the uncertainty in their predictions plays, therefore, a key role in making better-informed decisions that impact the actual system. The update of the simulation model based on data must be then carefully implemented. When applied to complex standing structures such as bridges, discrepancies between the computational model and the real system appear as model bias, which hinders the trustworthiness of the digital twin and increases its uncertainty. Classical Bayesian updating approaches aiming to infer the model parameters often fail at compensating for such model bias, leading to overconfident and unreliable predictions. In this paper, two alternative model bias identification approaches are evaluated in the context of their applicability to digital twins of bridges. A modularized version of Kennedy and O'Hagan's approach and another one based on Orthogonal Gaussian Processes are compared with the classical Bayesian inference framework in a set of representative benchmarks. Additionally, two novel extensions are proposed for such models: the inclusion of noise-aware kernels and the introduction of additional variables not present in the computational model through the bias term. The integration of such approaches in the digital twin corrects the predictions, quantifies their uncertainty, estimates noise from unknown physical sources of error and provides further insight into the system by including additional pre-existing information without modifying the computational model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. Tao F, Qi Q. Make more digital twins. Nature. 2019;573(7775):490–491. doi: 10.1038/d41586-019-02849-1
  2. doi: 10.1016/j.jii.2022.100383
  3. doi: 10.1061/(asce)me.1943-5479.0000763
  4. doi: 10.1186/s40323-022-00234-8
  5. doi: 10.1016/j.jcp.2009.05.016
  6. Koutsourelakis PS. A novel Bayesian strategy for the identification of spatially varying material properties and model validation: an application to static elastography. International Journal for Numerical Methods in Engineering. 2012;91(3):249–268. doi: 10.1002/nme.4261
  7. Mahnken R. Identification of Material Parameters for Constitutive Equations:1-21; John Wiley & Sons, Ltd . 2017
  8. doi: 10.1016/j.ijmecsci.2018.07.013
  9. Bruder L, Koutsourelakis PS. Beyond black-boxes in Bayesian inverse problems and model validation: applications in solid mechanics of elastography. International Journal for Uncertainty Quantification. 2018;8(5):447–482. doi: 10.1615/Int.J.UncertaintyQuantification.2018025837
  10. Alvin KF. Finite element model update via Bayesian estimation and minimization of dynamic residuals. 1996.
  11. Marwala T, Sibisi S. Finite Element Model Updating Using Bayesian Framework and Modal Properties. Journal of Aircraft. 2005;42(1):275–278. doi: 10.2514/1.11841
  12. doi: 10.1016/j.istruc.2022.05.041
  13. doi: 10.1007/s00466-022-02214-6
  14. doi: 10.1016/j.compstruc.2021.106604
  15. doi: 10.1002/suco.202100913
  16. doi: 10.1002/eng2.12669
  17. doi: 10.1002/cepa.2177
  18. Kaipio J, Somersalo E. Statistical and Computational Inverse Problems. Springer London, Limited, 2006.
  19. McClarren RG. Uncertainty Quantification and Predictive Computational Science A Foundation for Physical Scientists and Engineers. Springer, 2018
  20. doi: 10.1086/670067
  21. doi: 10.7717/peerj-cs.55
  22. doi: 10.1016/j.jocs.2020.101204
  23. BAM . probeye. https://github.com/BAMresearch/probeye; 2023.
  24. doi: 10.1126/science.263.5147.641
  25. doi: 10.1016/j.cam.2005.09.027
  26. Kennedy MC, O’Hagan A. Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2001;63(3):425–464. doi: 10.1111/1467-9868.00294
  27. doi: 10.1111/ele.13728
  28. doi: 10.1115/1.4007390
  29. Brynjarsdóttir J, O’Hagan A. Learning about physical parameters: the importance of model discrepancy. Inverse Problems. 2014;30(11):114007. doi: 10.1088/0266-5611/30/11/114007
  30. doi: 10.1214/09-ba404
  31. doi: 10.1080/19401493.2018.1475506
  32. Chong A, Menberg K. Guidelines for the Bayesian calibration of building energy models. Energy and Buildings. 2018;174:527–547. doi: 10.1016/j.enbuild.2018.06.028
  33. doi: 10.1615/int.j.uncertaintyquantification.2019027384
  34. doi: 10.1111/j.1467-9876.2011.01014.x
  35. doi: 10.1016/j.istruc.2021.04.059
  36. Strong M, Oakley JE. When Is a Model Good Enough? Deriving the Expected Value of Model Improvement via Specifying Internal Model Discrepancies. SIAM/ASA Journal on Uncertainty Quantification. 2014;2(1):106–125. doi: 10.1137/120889563
  37. Plumlee M. Bayesian Calibration of Inexact Computer Models. Journal of the American Statistical Association. 2017;112(519):1274–1285. doi: 10.1080/01621459.2016.1211016
  38. Liu JS. Monte Carlo Strategies in Scientific Computing. Springer New York, 2004
  39. Rasmussen CE. Gaussian processes for machine learning. MIT Press, 2006.
  40. Gramacy RB. Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC, 2020. http://bobby.gramacy.com/surrogates/.
  41. Gelman A, Rubin DB. Inference from Iterative Simulation Using Multiple Sequences. Statistical Science. 1992;7(4). doi: 10.1214/ss/1177011136
  42. Metzen JH. gp_extras. https://github.com/jmetzen/gp_extras; 2016.
  43. SPP: SPP 100+. Technical Univeristy of Dresden: www.spp100plus.de; 2023. Accessed November 18, 2023.
  44. Pelke E, Zichner T. Ertüchtigung der Nibelungenbrücke Worms. Beton- und Stahlbetonbau. 2015;110(2):113–130. doi: 10.1002/best.201400082
  45. Janberg N. Nibelungenbrücke. Structurae, International Database and Gallery of Structures https://structurae.net/en/structures/nibelungenbrucke; 2000. Last updated on February 5, 2016. Accessed November 18, 2023.
  46. doi: 10.1177/00202940211007166
  47. doi: 10.1007/s13349-018-0299-y
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com