Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Suppression of the Talbot effect in Fourier transform acousto-optic imaging (2312.00432v1)

Published 1 Dec 2023 in physics.class-ph, eess.IV, and physics.optics

Abstract: We report on the observation and correction of an imaging artifact attributed to the Talbot effect in the context of acousto-optic imaging using structured acoustic waves. When ultrasound waves are emitted with a periodic structure, the Talbot effect produces $\pi$ -phase shifts of that periodic structure at every half of the Talbot distance in propagation. This unwanted artifact is detrimental to the image reconstruction, which assumes near-field diffraction is negligible. Here, we demonstrate both theoretically and experimentally how imposing an additional phase modulation on the acoustic periodic structure induces a symmetry constraint leading to the annihilation of the Talbot effect. This will significantly improve the acousto-optic image reconstruction quality and allows for an improvement of the reachable spatial resolution of the image.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. M. Bocoum, J.-L. Gennisson, J.-B. Laudereau, et al., “Structured ultrasound-modulated optical tomography,” \JournalTitleApplied optics 58, 1933–1940 (2019).
  2. M. Bocoum, J.-L. Gennisson, A. A. Grabar, et al., “Reconstruction of bi-dimensional images in fourier-transform acousto-optic imaging,” \JournalTitleOptics Letters 45, 4855–4858 (2020).
  3. L. Dutheil, M. Bocoum, M. Fink, et al., “Fourier transform acousto-optic imaging with off-axis holographic detection,” \JournalTitleApplied optics 60, 7107–7112 (2021).
  4. M. M. Qureshi, J. Brake, H.-J. Jeon, et al., “In vivo study of optical speckle decorrelation time across depths in the mouse brain,” \JournalTitleBiomedical optics express 8, 4855–4864 (2017).
  5. Y. Liu, P. Lai, C. Ma, et al., “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light,” \JournalTitleNature communications 6, 5904 (2015).
  6. Z. Cheng, C. Li, A. Khadria, et al., “High-gain and high-speed wavefront shaping through scattering media,” \JournalTitleNature Photonics pp. 1–7 (2023).
  7. H. F. Talbot, “Lxxvi. facts relating to optical science. no. iv,” \JournalTitleThe London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 9, 401–407 (1836).
  8. J. R. Leger, “Lateral mode control of an AlGaAs laser array in a talbot cavity,” \JournalTitleApplied physics letters 55, 334–336 (1989).
  9. J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” \JournalTitleApplied physics letters 52, 1771–1773 (1988).
  10. D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear talbot-cavity semiconductor lasers,” \JournalTitleOptics letters 16, 823–825 (1991).
  11. S. Chowdhury, J. Chen, and J. A. Izatt, “Structured illumination fluorescence microscopy using talbot self-imaging effect for high-throughput visualization,” \JournalTitlearXiv preprint arXiv:1801.03540 (2018).
  12. L. Stuerzebecher, T. Harzendorf, U. Vogler, et al., “Advanced mask aligner lithography: fabrication of periodic patterns using pinhole array mask and talbot effect,” \JournalTitleOptics express 18, 19485–19494 (2010).
  13. L. Wang, F. Clube, C. Dais, et al., “Sub-wavelength printing in the deep ultra-violet region using displacement talbot lithography,” \JournalTitleMicroelectronic Engineering 161, 104–108 (2016).
  14. L. Rayleigh, “Xxv. on copying diffraction-gratings, and on some phenomena connected therewith,” \JournalTitleThe London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 11, 196–205 (1881).
  15. M. R. Dennis, N. I. Zheludev, and F. J. G. De Abajo, “The plasmon talbot effect,” \JournalTitleOptics Express 15, 9692–9700 (2007).
  16. M. S. Chapman, C. R. Ekstrom, T. D. Hammond, et al., “Near-field imaging of atom diffraction gratings: The atomic talbot effect,” \JournalTitlePhysical Review A 51, R14 (1995).
  17. J. F. Clauser and S. Li, “Talbot-vonlau atom interferometry with cold slow potassium,” \JournalTitlePhysical Review A 49, R2213 (1994).
  18. L. Deng, E. W. Hagley, J. Denschlag, et al., “Temporal, matter-wave-dispersion talbot effect,” \JournalTitlePhysical Review Letters 83, 5407 (1999).
  19. A. N. Morozov, M. P. Krikunova, B. Skuibin, and E. V. Smirnov, “Observation of the talbot effect for ultrasonic waves,” \JournalTitleJETP Letters 106, 23–25 (2017).
  20. P. Candelas, J. M. Fuster, S. Pérez-López, et al., “Observation of ultrasonic talbot effect in perforated plates,” \JournalTitleUltrasonics 94, 281–284 (2019).
  21. P. Latimer and R. F. Crouse, “Talbot effect reinterpreted,” \JournalTitleApplied optics 31, 80–89 (1992).
  22. M. Berry, I. Marzoli, and W. Schleich, “Quantum carpets, carpets of light,” \JournalTitlePhysics World 14, 39 (2001).
  23. J. Wen, Y. Zhang, and M. Xiao, “The talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” \JournalTitleAdvances in optics and photonics 5, 83–130 (2013).
  24. K. Pelka, J. Graf, T. Mehringer, and J. von Zanthier, “Prime number decomposition using the talbot effect,” \JournalTitleOptics Express 26, 15009–15014 (2018).
  25. H. G. De Chatellus, E. Lacot, W. Glastre, et al., “Theory of talbot lasers,” \JournalTitlePhysical Review A 88, 033828 (2013).
  26. L. Romero Cortés, R. Maram, H. Guillet de Chatellus, and J. Azaña, “Arbitrary energy-preserving control of optical pulse trains and frequency combs through generalized talbot effects,” \JournalTitleLaser & photonics reviews 13, 1900176 (2019).
  27. J. A. Jensen, “A model for the propagation and scattering of ultrasound in tissue,” \JournalTitleThe Journal of the Acoustical Society of America 89, 182–190 (1991).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.