Suppression of the Talbot effect in Fourier transform acousto-optic imaging (2312.00432v1)
Abstract: We report on the observation and correction of an imaging artifact attributed to the Talbot effect in the context of acousto-optic imaging using structured acoustic waves. When ultrasound waves are emitted with a periodic structure, the Talbot effect produces $\pi$ -phase shifts of that periodic structure at every half of the Talbot distance in propagation. This unwanted artifact is detrimental to the image reconstruction, which assumes near-field diffraction is negligible. Here, we demonstrate both theoretically and experimentally how imposing an additional phase modulation on the acoustic periodic structure induces a symmetry constraint leading to the annihilation of the Talbot effect. This will significantly improve the acousto-optic image reconstruction quality and allows for an improvement of the reachable spatial resolution of the image.
- M. Bocoum, J.-L. Gennisson, J.-B. Laudereau, et al., “Structured ultrasound-modulated optical tomography,” \JournalTitleApplied optics 58, 1933–1940 (2019).
- M. Bocoum, J.-L. Gennisson, A. A. Grabar, et al., “Reconstruction of bi-dimensional images in fourier-transform acousto-optic imaging,” \JournalTitleOptics Letters 45, 4855–4858 (2020).
- L. Dutheil, M. Bocoum, M. Fink, et al., “Fourier transform acousto-optic imaging with off-axis holographic detection,” \JournalTitleApplied optics 60, 7107–7112 (2021).
- M. M. Qureshi, J. Brake, H.-J. Jeon, et al., “In vivo study of optical speckle decorrelation time across depths in the mouse brain,” \JournalTitleBiomedical optics express 8, 4855–4864 (2017).
- Y. Liu, P. Lai, C. Ma, et al., “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light,” \JournalTitleNature communications 6, 5904 (2015).
- Z. Cheng, C. Li, A. Khadria, et al., “High-gain and high-speed wavefront shaping through scattering media,” \JournalTitleNature Photonics pp. 1–7 (2023).
- H. F. Talbot, “Lxxvi. facts relating to optical science. no. iv,” \JournalTitleThe London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 9, 401–407 (1836).
- J. R. Leger, “Lateral mode control of an AlGaAs laser array in a talbot cavity,” \JournalTitleApplied physics letters 55, 334–336 (1989).
- J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” \JournalTitleApplied physics letters 52, 1771–1773 (1988).
- D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear talbot-cavity semiconductor lasers,” \JournalTitleOptics letters 16, 823–825 (1991).
- S. Chowdhury, J. Chen, and J. A. Izatt, “Structured illumination fluorescence microscopy using talbot self-imaging effect for high-throughput visualization,” \JournalTitlearXiv preprint arXiv:1801.03540 (2018).
- L. Stuerzebecher, T. Harzendorf, U. Vogler, et al., “Advanced mask aligner lithography: fabrication of periodic patterns using pinhole array mask and talbot effect,” \JournalTitleOptics express 18, 19485–19494 (2010).
- L. Wang, F. Clube, C. Dais, et al., “Sub-wavelength printing in the deep ultra-violet region using displacement talbot lithography,” \JournalTitleMicroelectronic Engineering 161, 104–108 (2016).
- L. Rayleigh, “Xxv. on copying diffraction-gratings, and on some phenomena connected therewith,” \JournalTitleThe London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 11, 196–205 (1881).
- M. R. Dennis, N. I. Zheludev, and F. J. G. De Abajo, “The plasmon talbot effect,” \JournalTitleOptics Express 15, 9692–9700 (2007).
- M. S. Chapman, C. R. Ekstrom, T. D. Hammond, et al., “Near-field imaging of atom diffraction gratings: The atomic talbot effect,” \JournalTitlePhysical Review A 51, R14 (1995).
- J. F. Clauser and S. Li, “Talbot-vonlau atom interferometry with cold slow potassium,” \JournalTitlePhysical Review A 49, R2213 (1994).
- L. Deng, E. W. Hagley, J. Denschlag, et al., “Temporal, matter-wave-dispersion talbot effect,” \JournalTitlePhysical Review Letters 83, 5407 (1999).
- A. N. Morozov, M. P. Krikunova, B. Skuibin, and E. V. Smirnov, “Observation of the talbot effect for ultrasonic waves,” \JournalTitleJETP Letters 106, 23–25 (2017).
- P. Candelas, J. M. Fuster, S. Pérez-López, et al., “Observation of ultrasonic talbot effect in perforated plates,” \JournalTitleUltrasonics 94, 281–284 (2019).
- P. Latimer and R. F. Crouse, “Talbot effect reinterpreted,” \JournalTitleApplied optics 31, 80–89 (1992).
- M. Berry, I. Marzoli, and W. Schleich, “Quantum carpets, carpets of light,” \JournalTitlePhysics World 14, 39 (2001).
- J. Wen, Y. Zhang, and M. Xiao, “The talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” \JournalTitleAdvances in optics and photonics 5, 83–130 (2013).
- K. Pelka, J. Graf, T. Mehringer, and J. von Zanthier, “Prime number decomposition using the talbot effect,” \JournalTitleOptics Express 26, 15009–15014 (2018).
- H. G. De Chatellus, E. Lacot, W. Glastre, et al., “Theory of talbot lasers,” \JournalTitlePhysical Review A 88, 033828 (2013).
- L. Romero Cortés, R. Maram, H. Guillet de Chatellus, and J. Azaña, “Arbitrary energy-preserving control of optical pulse trains and frequency combs through generalized talbot effects,” \JournalTitleLaser & photonics reviews 13, 1900176 (2019).
- J. A. Jensen, “A model for the propagation and scattering of ultrasound in tissue,” \JournalTitleThe Journal of the Acoustical Society of America 89, 182–190 (1991).