Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Green Edge AI: A Contemporary Survey (2312.00333v2)

Published 1 Dec 2023 in cs.AI, cs.IT, cs.NI, and math.IT

Abstract: AI technologies have emerged as pivotal enablers across a multitude of industries largely due to their significant resurgence over the past decade. The transformative power of AI is primarily derived from the utilization of deep neural networks (DNNs), which require extensive data for training and substantial computational resources for processing. Consequently, DNN models are typically trained and deployed on resource-rich cloud servers. However, due to potential latency issues associated with cloud communications, deep learning (DL) workflows are increasingly being transitioned to wireless edge networks in proximity to end-user devices (EUDs). This shift is designed to support latency-sensitive applications and has given rise to a new paradigm of edge AI, which will play a critical role in upcoming sixth-generation (6G) networks to support ubiquitous AI applications. Despite its considerable potential, edge AI faces substantial challenges, mostly due to the dichotomy between the resource limitations of wireless edge networks and the resource-intensive nature of DL. Specifically, the acquisition of large-scale data, as well as the training and inference processes of DNNs, can rapidly deplete the battery energy of EUDs. This necessitates an energy-conscious approach to edge AI to ensure both optimal and sustainable performance. In this paper, we present a contemporary survey on green edge AI. We commence by analyzing the principal energy consumption components of edge AI systems to identify the fundamental design principles of green edge AI. Guided by these principles, we then explore energy-efficient design methodologies for the three critical tasks in edge AI systems, including training data acquisition, edge training, and edge inference. Finally, we underscore potential future research directions to further enhance the energy efficiency of edge AI.

Efforts to embed AI at the edge of networks are rapidly gaining traction, yet they bring with them a significant energy challenge. As applications proliferate across consumer electronics, healthcare, and manufacturing, leveraging deep neural networks (DNNs) has become common. These AI models, often requiring large amounts of data, have typically been processed on cloud servers. However, the latency in communication and potential privacy issues have begun pushing deep learning tasks closer to users on wireless edge networks.

Edge AI, particularly in support of upcoming sixth-generation (6G) networks, promises ubiquitous AI applications with critical performance. But the limited resources of wireless edge networks and the energy-intensive nature of DNNs present substantial challenges. AI's transformative power hinges on the need to balance between resource limitations and intensive computation requirements. Thus, an energy-conscious approach to edge AI that ensures optimal and sustainable performance is imperative.

The reviewed paper provides a survey on green edge AI, focusing on energy-efficient design methodologies for training data acquisition, edge training, and edge inference—three critical tasks in edge AI systems. It addresses efficient data acquisition for centralized edge learning by considering data sampling and transmission methods while ensuring minimal energy expenditure. Novel strategies are proposed, including adaptive sampling rates and learning-centric communications that prioritize important data and adapt to system dynamics.

For distributed edge model training, the paper discusses methods to minimize on-device model updates and computations. Techniques such as model quantization, gradient sparsification, and knowledge distillation are suggested for conserving energy. Additionally, resource management strategies like local training adaptation, dynamic device selection, and data offloading are critical for reducing energy usage in edge AI systems.

Finally, the paper explores potential future research directions, suggesting interests in integrated sensing and communication (ISAC), hardware-software co-design for edge AI platforms, and neuromorphic computing with spiking neural networks and compute-in-memory techniques. It also looks at the potential of harnessing green energy to power edge AI systems without incurring carbon emissions.

In summary, the paper articulates the energy challenges associated with edge AI and outlines a comprehensive set of strategies and methodologies to enhance energy efficiency. By doing so, it lays out a road map for future sustainable developments in edge AI systems within the context of emerging 6G networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (240)
  1. J. Moor, “The dartmouth college artificial intelligence conference: The next fifty years,” AI Mag., vol. 27, no. 4, pp. 87–91, Winter 2006.
  2. Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for visual understanding: A review,” Neurocomput., vol. 187, pp. 27–48, Apr. 2016.
  3. D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning for natural language processing,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 2, pp. 604–624, Feb. 2021.
  4. A. M. Ozbayoglu, M. UgurGudelek, and O. BeratSezer, “Deep learning for financial applications: A survey,” Appl. Soft Comput., vol. 93, p. 106384, Aug. 2020.
  5. V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, Dec. 2017.
  6. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Fourth Quart. 2017.
  7. Z. Tari, X. Yi, U. S. Premarathne, P. Bertok, and I. Khalil, “Security and privacy in cloud computing: Vision, trends, and challenges,” IEEE Cloud Comput., vol. 2, no. 2, pp. 30–38, Mar.-Apr. 2015.
  8. Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing - A key technology towards 5G,” ETSI White Paper, vol. 11, Sep. 2015.
  9. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: Paving the last mile of artificial intelligence with edge computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.
  10. K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for 6G: Vision, enabling technologies, and applications,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 5–36, Jan 2022.
  11. J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.
  12. ITU-R, “Framework and overall objectives of the future development of IMT for 2030 and beyond,” DRAFT NEW RECOMMENDATION, Jun. 2023.
  13. J. Wiles, “What’s new in artificial intelligence from the 2022 Gartner hype cycle,” https://www.gartner.com/en/articles/what-s-new-in-artificial-intelligence-from-the-2022-gartner-hype-cycle, Sep. 2022.
  14. R. Desislavov, F. M.-Plumed, and J. H.-Orallo, “Trends in AI inference energy consumption: Beyond the performance-vs-parameter laws of deep learning,” Sustain. Comput.: Inf. Syst., vol. 38, p. 100857, Feb. 2023.
  15. K. Hornik, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol. 2, pp. 359–366, 1989.
  16. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “ImageNet: A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (CVPR), Miami, FL, USA, Jun. 2009.
  17. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Proc. 26th Int. Conf. Neural Inf. Process. Syst. (NeurIPS), Lake Tahoe, NV, USA, Dec. 2012.
  18. J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu, “CoCa: Contrastive captioners are image-text foundation models.” [Online]. Available: https://arxiv.org/pdf/2205.01917.pdf
  19. R. Perrault el al., “The artificial intelligence index report 2019,” Dec. 2019. [Online]. Available: https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf
  20. E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for deep learning in NLP,” in Proc. Annu. Meeting Assoc. Comput. Linguistics (ACL), Florence, Italy, Jul. 2019.
  21. H. Wang, B. Kim, J. Xie, and Z. Han, “How is energy consumed in smartphone deep learning apps? Executing locally vs. remotely,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, Dec. 2019.
  22. Zodhya, “How much energy does ChatGPT consume?” https://medium.com/@zodhyatech/how-much-energy-does-chatgpt-consume-4cba1a7aef85, May 2023.
  23. A.-L. Ligozat, J. Lefevre, A. Bugeau, and J. Combaz, “Unraveling the hidden environmental impacts of AI solutions for environment life cycle assessment of AI solutions,” Sustain., vol. 14, no. 9, pp. 1–14, Apr. 2022.
  24. R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,” Commun. ACM, vol. 63, no. 12, pp. 54–63, Dec. 2020.
  25. T. Mastelic and I. Brandic, “Recent trends in energy-efficient cloud computing,” IEEE Cloud Comput., vol. 2, no. 1, pp. 40–47, Jan.-Feb. 2015.
  26. Tractica, “Artificial intelligence edge device shipments to reach 2.6 billion units annually by 2025,” https://www.edge-ai-vision.com/2018/09/artificial-intelligence-edge-device-shipments-to-reach-2-6-billion-units-annually-by-2025/, Sep. 2018.
  27. Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-efficient edge AI: Algorithms and systems,” IEEE Commun. Surveys Tuts., vol. 22, no. 4, pp. 2167–2191, Fourth Quart. 2020.
  28. W. Xu, Z. Yang, D. W.-K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah, “Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing,” IEEE J. Sel. Topics Signal Process., vol. 17, no. 1, pp. 9–39, Jan. 2023.
  29. D. Liu, H. Kong, X. Luo, W. Liu, and R. Subramaniam, “Bringing AI to edge: From deep learning’s perspective,” Neurocomput., vol. 485, pp. 297–320, May 2022.
  30. M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient acceleration of deep learning inference on resource-constrained edge devices: A review,” Proc. IEEE, vol. 111, no. 1, pp. 42–91, Jan. 2023.
  31. J. Xu, W. Zhou, Z. Fu, and H. Zhou, “A survey on green deep learning.” [Online]. Available: https://arxiv.org/pdf/2111.05193.pdf
  32. Q. Lan, D. Wen, Z. Zhang, Q. Zeng, X. Chen, P. Popovski, and K. Huang, “What is semantic communication? A view on conveying meaning in the era of machine intelligence,” J. Commun. Inf. Netw., vol. 6, no. 4, pp. 336–371, Dec. 2021.
  33. A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “GLUE: A multi-task benchmark and analysis platform for natural language understanding,” in Proc. Int. Conf. Learn. Repr. (ICML), New Orleans, LA, USA, May 2019.
  34. D. Liu, G. Zhu, J. Zhang, and K. Huang, “Data-importance aware user scheduling for communication-efficient edge machine learning,” IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 1, pp. 265–278, Mar. 2021.
  35. Z. Zhou, V. Tam, K. S. Lui, E. Y. Lam, A. Yuen, X. Hu, and N. Law, “Applying deep learning and wearable devices for educational data analytics,” in Proc. IEEE Int. Conf. Tools Artif. Intell. (ICTAI), Portland, OR, USA, Nov. 2019.
  36. L. Jia, Z. Zhou, F. Xu, and H. Jin, “Cost-efficient continuous edge learning for artificial intelligence of things,” IEEE Internet Things J., vol. 9, no. 10, pp. 7325–7337, May 2022.
  37. T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60, May 2020.
  38. J. Shao and J. Zhang, “Communication-computation trade-off in resource-constrained edge inference,” IEEE Commun. Mag., vol. 58, no. 12, pp. 20–26, Dec. 2020.
  39. OMNIVISION, “OV5675 - 5-megapixel product brief,” https://www.ovt.com/wp-content/uploads/2023/08/OV5675-PB-v1.3-WEB.pdf.
  40. INTEL, “Intel® RealSenseTMTM{}^{\text{TM}}start_FLOATSUPERSCRIPT TM end_FLOATSUPERSCRIPT LiDAR Camera L515 - Datasheet,” https://www.intelrealsense.com/download/7691/.
  41. TI, “Single-chip low-power 76-GHz to 81-GHz automotive mmWave radar sensor - AWRL1432,” https://www.ti.com/product/AWRL1432.
  42. ROHM, “Optical sensor for heart rate monitor IC - BH1790GLC,” https://fscdn.rohm.com/en/products/databook/datasheet/ic/sensor/pulse_wave/bh1790glc-e.pdf.
  43. P. Riihikallio, “8 reasons to turn down the transmit power of your Wi-Fi,” https://metis.fi/en/2017/10/txpower/, Oct. 2017.
  44. 3GPP, “User equipment (UE) radio transmission and reception,” 3GPP TS 38.101-1 V15.23.0, Sep. 2023.
  45. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (CVPR), Las Vegas, NV, USA, Jun. 2016.
  46. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Int. Conf. Learn. Repr. (ICLR), San Diego, CA, USA, May 2015.
  47. Y. Wu, Z. Wang, Y. Shi, and J. Hu, “Enabling on-device CNN training by self-supervised instance filtering and error map pruning,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 11, pp. 3445–3457, Nov. 2020.
  48. M. Welling, “Intelligence per kilowatts-hour,” Jul. 2018, Keynote Speech at the 2018 Int. Conf. Mach. Learn. (ICML).
  49. Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green cellular networks: A survey, some research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 13, no. 4, pp. 524–540, Fourth Quart. 2011.
  50. J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos, “Compute trends across three eras of machine learning,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Padua, Italy, Jul. 2022.
  51. C. T.-Huitzil and B. Girau, “Fault and error tolerance in neural networks: A review,” IEEE Access, vol. 5, pp. 17 322–17 341, Sep. 2017.
  52. A. Ruospo, E. Sanchez, L. M. L. L. Dilillo, M. Traiola, and A. Bosio, “A survey on deep learning resilience assessment methodologies,” Comput., vol. 56, no. 2, pp. 57–66, Feb. 2023.
  53. G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an intelligent edge: Wireless communication meets machine learning,” IEEE Commun. Mag., vol. 58, no. 1, pp. 19–25, Jan. 2020.
  54. J. C. SanMiguel and A. Cavallaro, “Energy consumption models for smart camera networks,” IEEE Trans. Circuits Syst. Video Techn., vol. 27, no. 12, pp. 2661–2674, Dec. 2017.
  55. R. Likamwa, J. Hu, V. Kodukula, and Y. Liu, “Adaptive resolution-based tradeoffs for energy-efficient visual computing systems,” IEEE Pervasive Comput., vol. 20, no. 2, pp. 18–26, Apr.-Jun. 2021.
  56. D. Giouroukis, A. Dadiani, J. Traub, S. Zeuch, and V. Markl, “A survey of adaptive sampling and filtering algorithms for the Internet of Things,” in Proc. 14th ACM Int. Conf. Distrib. Event-based Syst. (DEBS), Montreal, QC, Canada, Jul. 2020.
  57. A. Karaki, A. Nasser, C. A. Jaoude, and H. Harb, “An adaptive sampling technique for massive data collection in distributed sensor networks,” in Proc. IEEE Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Tangier, Morocco, Jun. 2019.
  58. P. Lou, L. Shi, X. Zhang, Z. Xiao, and J. Yan, “A data-driven adaptive sampling method based on edge computing,” Sensors, vol. 20, no. 8, Apr. 2020.
  59. S. Ghosh, S. De, S. Chatterjee, and M. Portmann, “Edge intelligence framework for data-driven dynamic priority sensing and transmission,” IEEE Trans. Green Commun. Netw., vol. 6, no. 1, pp. 376–390, Mar. 2022.
  60. W. Cheng, S. Erfani, R. Zhang, and R. Kotagiri, “Learning datum-wise sampling frequency for energy-efficient human activity recognition,” in Proc. AAAI Conf. Artif. Intell., New Orleans, LA, USA, Apr. 2018.
  61. C. Siddique and X. Ban, “State-dependent self-adaptive sampling (SAS) method for vehicle trajectory data,” Transp. Res. Part C: Emerg. Techn., vol. 100, pp. 224–237, 2019.
  62. D. Liu, G. Zhu, Q. Zeng, J. Zhang, and K. Huang, “Wireless data acquisition for edge learning: Data-importance aware retransmission,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 406–420, Mar. 2021.
  63. X. Huang and S. Zhou, “Adaptive transmission for edge learning via training loss estimation,” in Proc. IEEE Int. Conf. Commun. (ICC), Dublin, Ireland, Jun. 2020.
  64. Z. Zeng, Y. Liu, W. Tang, and F. Chen, “Noise is useful: Exploiting data diversity for edge intelligence,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 957–961, May 2021.
  65. C.-K. Tham and R. Rajagopalan, “Active learning for IoT data prioritization in edge nodes over wireless networks,” in Proc. 46th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Singapore, Oct. 2020.
  66. J. Azar, A. Makhoul, M. Barhamgi, and R. Couturier, “An energy efficient IoT data compression approach for edge machine learning,” Future Gen. Comput. Syst., vol. 96, pp. 168–175, Jul. 2019.
  67. M. Johnson, P. Anderson, M. Dras, and M. Steedman, “Predicting accuracy on large datasets from smaller pilot data,” in Proc. 56th Annu. Meeting Assoc. Comput. Linguistics (ACL), Melbourne, VIC, Australia, Jul. 2018.
  68. S. Wang, Y.-C. Wu, M. Xia, R. Wang, and H. V. Poor, “Machine intelligence at the edge with learning centric power allocation,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7293–7308, Jul. 2020.
  69. H. Xie, M. Xia, P. Wu, S. Wang, and H. V. Poor, “Edge learning for large-scale Internet of Things with task-oriented efficient communication,” IEEE Trans. Wireless Commun., to appear.
  70. X. Li, S. Wang, G. Zhu, Z. Zhou, K. Huang, and Y. Gong, “Data partition and rate control for learning and energy efficient edge intelligence,” IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 9127–9142, Nov. 2022.
  71. M. Merluzzi, P. D. Lorenzo, and S. Barbarossa, “Wireless edge machine learning: Resource allocation and trade-offs,” IEEE Access, vol. 9, pp. 45 377–45 398, Mar. 2021.
  72. C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” J. Big Data, vol. 6, pp. 1–48, 2019.
  73. H. Huang, P. S. Yu, and C. Wang, “An introduction to image synthesis with generative adversarial nets.” [Online]. Available: http://arxiv.org/abs/1803.04469
  74. M. F.-Adar, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Synthetic data augmentation using GAN for improved liver lesion classification,” in Proc. IEEE Int. Symp. Biomed. Imag. (ISBI), Washington, DC, USA, Apr. 2018.
  75. V. Sandfort, K. Yan, P. J. Pickhardt, and R. M. Summers, “Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks,” Sci. Report, vol. 9, p. 16884, Nov. 2019.
  76. S. Yun, S. J. Oh, B. Heo, D. Han, and J. Kim, “Videomix: Rethinking data augmentation for video classification.” [Online]. Available: https://arxiv.org/pdf/2012.03457.pdf
  77. M. E. Tschuchnig, C. Ferner, and S. Wegenkittl, “Sequential IoT data augmentation using generative adversarial networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Barcelona, Spain, May 2020.
  78. Y. He, B. Fu, J. Yu, R. Li, , and R. Jiang, “Efficient learning of healthcare data from IoT devices by edge convolution neural networks,” MDPI Appl. Sci., vol. 10, no. 24, p. 8934, Dec. 2020.
  79. S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.
  80. J. Yang, H. Zou, S. Cao, Z. Chen, and L. Xie, “MobileDA: Toward edge-domain adaptation,” IEEE Internet Things J., vol. 7, no. 8, pp. 6909–6918, Aug. 2020.
  81. X. Liu, W. Yu, F. Liang, D. Griffith, and N. Golmie, “Toward deep transfer learning in industrial Internet of Things,” IEEE Internet Things J., vol. 8, no. 15, pp. 12 163–12 175, Aug. 2021.
  82. C.-H. Lu and X.-Z. Lin, “Toward direct edge-to-edge transfer learning for IoT-enabled edge cameras,” IEEE Internet Things J., vol. 8, no. 6, pp. 4931–4943, Mar. 2021.
  83. D. Khan and I. W.-H. Ho, “CrossCount: efficient device-free crowd counting by leveraging transfer learning,” IEEE Internet Things J., vol. 10, no. 5, pp. 4049–4058, Mar. 2023.
  84. Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A survey on few-shot learning,” ACM Comput. Surveys, vol. 53, no. 3, pp. 1–34, Jun. 2020.
  85. Y. Zeng, B. Song, C. Yuwen, X. Du, and M. Guizani, “Few-shot scale-insensitive object detection for edge computing platform,” IEEE Trans. Sustain. Comput., pp. 726–735, Oct.-Dec. 2022.
  86. L. Yang, Y. Li, J. Wang, and N. N. Xiong, “FSLM: An intelligent few-shot learning model based on siamese networks for IoT technology,” IEEE Internet Things J., vol. 8, no. 12, pp. 9717–9729, Jun. 2021.
  87. Z. Zhao, Y. Lai, Y. Wang, W. Jia, and H. He, “A few-shot learning based approach to IoT traffic classification,” IEEE Commmun. Lett., vol. 26, no. 3, pp. 537–541, Mar. 2022.
  88. M. A.-Rubaie and J. M. Chang, “Privacy-preserving machine learning: Threats and solutions,” IEEE Security Privacy, vol. 17, no. 2, pp. 49–58, Mar.-Apr. 2019.
  89. TensorFlow, “On-device training with tensorflow lite.” [Online]. Available: https://www.tensorflow.org/lite/examples/on_device_training/overview
  90. A. Das, Y. D. Kwon, J. Chauhan, and C. Mascolo, “Enabling on-device smartphone GPU based training: Lessons learned.” [Online]. Available: https://arxiv.org/pdf/2202.10100.pdf
  91. Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM Trans. Intell. Syst. Techn., vol. 10, no. 2, p. 12, Mar. 2019.
  92. J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer, “A survey on distributed machine learning,” ACM Comput. Surveys, vol. 53, no. 2, pp. 1–33, Mar. 2021.
  93. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Proc. Int. Conf. Artif. Intell. Statistics (AISTATS), Fort Lauderdale, FL, USA, Apr. 2017.
  94. M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and H. V. Poor, “Distributed learning in wireless networks: Recent progress and future challenges,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3579–3605, Dec. 2021.
  95. I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural networks,” in Proc. 30th Conf. Neural Inf. Proc. Syst. (NeurIPS), Barcelona, Spain, Dec. 2016.
  96. Y. Yang, Z. Zhang, and Q. Yang, “Communication-efficient federated learning with binary neural networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3836–3850, Dec. 2021.
  97. M. Kim, W. Saad, M. Mozaffari, and M. Debbah, “Green, quantized federated learning over wireless networks: An energy-efficient design,” IEEE Trans. Wireless Commun., to appear.
  98. D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD: Communication-efficient SGD via gradient quantization and encoding,” in Proc. 31st Conf. Neural Inf. Process. Syst. (NeurIPS), Long Beach, CA, USA, Dec. 2017.
  99. A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, “FedPAQ: A communication-efficient federated learning method with periodic averaging and quantization,” in Proc. Int. Conf. Aritif. Intell. Stats. (AISTATS), Palermo, Italy, Aug. 2020.
  100. J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “signSGD: Compressed optimisation for non-convex problems,” in Proc. Int. Conf. Mach. Learn. (ICML), Stockholm, Sweden, Jun. 2018.
  101. R. Jin, X. He, and H. Dai, “Communication efficient federated learning with energy awareness over wireless networks,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 5204–5219, Jul. 2022.
  102. D. Jhunjhunwala, A. Gadhikar, G. Joshi, and Y. C. Eldar, “Adaptive quantization of model updates for communication-efficient federated learning,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Toronto, ON, Canada, Jun. 2021.
  103. N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “UVeQFed: Universal vector quantization for federated learning,” IEEE Trans. Signal Process., vol. 69, pp. 500–514, 2021.
  104. Y. Lin, S. Han, H. Mao, Y. Wang, and W. Dally, “Deep gradient compression: Reducing the communication bandwidth for distributed training,” in Proc. Int. Conf. Learn. Repr. (ICLR), Vancouver, BC, Canada, Jun. 2018.
  105. P. Han, S. Wang, and K. K. Leung, “Adaptive gradient sparsification for efficient federated learning: An online learning approach,” in Proc. IEEE Int. Conf. Distr. Comput. Syst. (ICDCS), Singapore, Dec. 2020.
  106. S. Liu, G. Yu, R. Yin, and J. Yuan, “Adaptive network pruning for wireless federated learning,” IEEE Wireless Commun. Lett., vol. 10, no. 7, pp. 1572–1576, July 2021.
  107. D. Wen, K.-J. Jeon, and K. Huang, “Federated dropout – a simple approach for enabling federated learning on resource constrained devices,” IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 923 – 927, May 2022.
  108. Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and L. Tassiulas, “Model pruning enables efficient federated learning on edge devices,” IEEE Trans. Neural Netw. Learn. Syst., to appear.
  109. L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To talk or to work: Flexible communication compression for energy efficient federated learning over heterogeneous mobile edge devices,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), Vancouver, BC, Canada, May 2021.
  110. G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network.” [Online]. Available: http://arxiv.org/abs/1503.02531
  111. D. Li and J. Wang, “FedMD: Heterogenous federated learning via model distillation.” [Online]. Available: https://arxiv.org/pdf/1910.03581.pdf
  112. L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Communication-efficient federated distillation with active data sampling,” in Proc. IEEE Int. Conf. Commun. (ICC), Seoul, South Korea, May 2022.
  113. C. Wu, F. Wu, L. Lyu, Y. Huang, and X. Xie, “Communication-efficient federated learning via knowledge distillation,” Nat. Commun., vol. 13, no. 1, p. 2032, Apr. 2022.
  114. S. Oh, J. Park, E. Jeong, H. Kim, M. Bennis, and S.-L. Kim, “Mix2FLD: Downlink federated learning after uplink federated distillation with two-way mixup,” IEEE Commun. Lett., vol. 24, no. 10, pp. 2211–2215, Oct. 2020.
  115. G. M. Jed Mills, Jia Hu, “Faster federated learning with decaying number of local SGD steps.” [Online]. Available: https://arxiv.org/pdf/2305.09628.pdf
  116. L. Balles, J. Romero, and P. Hennig, “Coupling adaptive batch sizes with learning rates,” in Proc. 33rd Conf. Uncertainty Artif. Intell. (UAI), Sydney, NSW, Australia, Aug. 2017.
  117. Z. Ma, Y. Xu, H. Xu, Z. Meng, L. Huang, and Y. Xue, “Adaptive batch size for federated learning in resource-constrained edge computing,” IEEE Trans. Mobile Comput., vol. 22, no. 1, pp. 37–53, Jan. 2023.
  118. Y. Zhan, P. Li, and S. Guo, “Experience-driven computational resource allocation of federated learning by deep reinforcement learning,” in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), New Orleans, LA, USA, May 2020.
  119. Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. S.-Bahaei, “Energy efficient federated learning over wireless communication networks,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 3579–3605, Mar. 2021.
  120. X. Mo and J. Xu, “Energy-efficient federated edge learning with joint communication and computation design,” J. Commun. Inf. Netw., vol. 6, no. 2, pp. 110–124, Jun. 2021.
  121. Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient resource management for federated edge learning with CPU-GPU heterogeneous computing,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7947–7962, Dec. 2021.
  122. T. Zhang and S. Mao, “Energy-efficient federated learning with intelligent reflecting surface,” IEEE Trans. Green Commun. Netw., vol. 6, no. 2, pp. 845–858, Jun. 2022.
  123. T. Nishio and R. Yonetani, “Client selection for federated learning with heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf. Commun. (ICC), Shanghai, China, May 2019.
  124. L. Li, H. Xiong, Z. Guo, J. Wang, and C.-Z. Xu, “SmartPC: Hierarchical pace control in real-time federated learning system,” in Proc. IEEE Real-Time Syst. Symp. (RTSS), Hong Kong, China, Dec. 2019.
  125. Y. Hu, H. Huang, and N. Yu, “Device scheduling for energy-efficient federated learning over wireless network based on TDMA mode,” in Proc. Int. Conf. Wireless Commun. Signal Process. (WCSP), Nanjing, China, Oct. 2020.
  126. L. Yu, R. Albelaihi, X. Sun, N. Ansari, and M. Devetsikiotis, “Jointly optimizing client selection and resource management in wireless federated learning for internet of things,” IEEE Internet Things J., vol. 9, no. 6, pp. 4385–4395, Mar. 2022.
  127. J. Xu and H. Wang, “Client selection and bandwidth allocation in wireless federated learning networks: A long-term perspective,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1188–1200, Feb. 2021.
  128. K. Guo, Z. Chen, H. H. Yang, and T. Q. S. Quek, “Dynamic scheduling for heterogeneous federated learning in private 5G edge networks,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 1, pp. 26–40, Jan. 2022.
  129. C. Battiloro, P. D. Lorenzo, M. Merluzzi, and S. Barbarossa, “Lyapunov-based optimization of edge resources for energy-efficient adaptive federated learning,” IEEE Trans. Green Commun. Netw., vol. 7, no. 1, pp. 265–280, Mar. 2023.
  130. Y. G. Kim and C.-J. Wu, “AutoFL: Enabling heterogeneity-aware energy efficient federated learning,” in Proc. IEEE/ACM Int. Symp. Microarchit. (MICRO), Athens, Greece, Oct. 2021.
  131. A. Katharopoulos and F. Fleuret, “Not all samples are created equal: Deep learning with importance sampling,” in Proc. Int. Conf. Mach. Learn. (ICML), Stockholm, Sweden, Jul. 2018.
  132. Y. Xiao, Y. Li, G. Shi, and H. V. Poor, “Optimizing resource-efficiency for federated edge intelligence in IoT networks,” in Proc. Int. Conf. Wireless Commun. Signal Process. (WCSP), Nanjing, China, Oct. 2020.
  133. Y. He, J. Ren, G. Yu, and J. Yuan, “Importance-aware data selection and resource allocation in federated edge learning system,” IEEE Trans. Veh. Techn., vol. 69, no. 11, pp. 13 593–13 605, Nov. 2020.
  134. A. M. Albaseer, M. Abdallah, A. A.-Fuqaha, and A. Erbad, “Fine-grained data selection for improved energy efficiency of federated edge learning,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 5, pp. 3258–3271, Sep.-Oct. 2022.
  135. A. Li, L. Zhang, J. Tan, Y. Qin, J. Wang, and X.-Y. Li, “Sample-level data selection for federated learning,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), Virtual Event, May 2021.
  136. W. Yang, Y. Zhang, W. Y. B. Lim, Z. Xiong, Y. Jiao, and J. Jin, “Privacy is not free: Energy-aware federated learning for mobile and edge intelligence,” in Proc. Int. Conf. Wireless Commun. Signal Process. (WCSP), Nanjing, China, Oct. 2020.
  137. Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, and F. R. Yu, “Computation offloading for edge-assisted federated learning,” IEEE Trans. Veh. Techn., vol. 70, no. 9, pp. 9330–9334, Sep. 2021.
  138. C. W. Zaw, S. R. Pandey, K. Kim, and C. S. Hong, “Energy-aware resource management for federated learning in multi-access edge computing systems,” IEEE Access, vol. 9, pp. 34 938–34 950, Jan. 2021.
  139. X. Cai, X. Mo, and J. Xu, “D2D computation task offloading for efficient federated learning,” Chinese J. Internet Things, vol. 3, no. 4, pp. 82–90, Dec. 2019.
  140. S. Wang, M. Lee, S. Hosseinalipour, R. Morabito, M. Chiang, and C. G. Brinton, “Device sampling for heterogeneous federated learning: Theory, algorithms, and implementation,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Vancouver, BC, Canada, May 2021.
  141. M. H. Shullary, A. A. Abdellatif, and Y. Massoudn, “Energy-efficient active federated learning on non-iid data,” in Proc. IEEE Int. Midwest Symp. Circuits Syst. (MWSCAS), Fukuoka, Japan, Aug. 2022.
  142. Y. Sun, J. Shao, S. Li, Y. Mao, and J. Zhang, “Stochastic coded federated learning with convergence and privacy guarantees,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Espoo, Finland, Jul. 2022.
  143. J. Shao, Y. Sun, S. Li, and J. Zhang, “DReS-FL: Dropout-resilient secure federated learning for non-iid clients via secret data sharing,” in Proc. 36th Conf. Neural Inf. Process. Syst. (NeurIPS), New Orleans, LA, USA, Nov.-Dec. 2022.
  144. N. Lang, E. Sofer, T. Shaked, and N. Shlezinger, “Joint privacy enhancement and quantization in federated learning,” IEEE Trans. Signal Process., vol. 77, pp. 295–310, 2023.
  145. Y. Sun, Y. Mao, and J. Zhang, “MimiC: Combating client dropouts in federated learning by mimicking central updates,” IEEE Trans. Mobile Comput., to appear. [Online]. Available: https://arxiv.org/pdf/2306.12212.pdf
  146. W. Niu, P. Zhao, Z. Zhan, X. Lin, Y. Wang, and B. Ren, “Towards real-time DNN inference on mobile platforms with model pruning and compiler optimization,” in Proc. 29th Int. Joint Conf. Artif. Intell. (IJCAI), Yokohama, Japan, Jan. 2020.
  147. P. Guo, B. Hu, and W. Hu, “Mistify: Automating DNN model porting for on-device inference at the edge,” in Proc. 18th USENIX Symp. Netw. Syst. Design Implement. (NSDI), Virtual Event, Apr. 2021.
  148. S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S. Reda, “Understanding the impact of precision quantization on the accuracy and energy of neural networks,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Lausanne, Switzerland, Mar. 2017.
  149. A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A survey of quantization methods for efficient neural network inference.” [Online]. Available: https://arxiv.org/abs/2103.13630
  150. D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned quantization for highly accurate and compact deep neural networks,” in Proc. Eur. Conf. Comput. Vision (ECCV), Munich, Germany, Sep. 2018.
  151. R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quantization of convolutional networks for rapid-deployment,” in Proc. 33rd Conf. Neural Inf. Proc. Syst. (NeurISP), Vancouver, BC, Canada, Dec. 2019.
  152. K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware automated quantization with mixed precision,” in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (CVPR), Long Beach, CA, USA, Jun. 2019.
  153. T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quantization for deep neural network acceleration: A survey,” Neurocomput., vol. 461, pp. 370–403, Oct. 2021.
  154. T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolutional neural networks using energy-aware pruning,” in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (CVPR), Honolulu, HI, USA, Jul. 2017.
  155. H. Kung, “Why systolic architectures?” Comput., vol. 15, no. 1, pp. 37–46, Jan. 1982.
  156. H. Yang, Y. Zhu, and J. Liu, “Energy-constrained compression for deep neural networks via weighted sparse projection and layer input masking,” in Proc. Int. Conf. Learn. Repr. (ICLR), New Orleans, LA, USA, May 2019.
  157. X. Zhi, V. Babbar, P. Sun, F. Silavong, R. Shi, and S. Moran, “Lightweight parameter pruning for energy-efficient deep learning: A binarized gating module approach.” [Online]. Available: https://arxiv.org/pdf/2302.10798v2.pdf
  158. J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A survey,” Springer Int. J. Comput. Vision, vol. 129, pp. 1789–1819, Mar. 2021.
  159. A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fitnets: Hints for thin deep nets,” in Proc. Int. Conf. Learn. Repr. (ICLR), San Diego, CA, USA, May 2015.
  160. W. Park, D. Kim, Y. Lu, and M. Cho, “Relational knowledge distillation,” in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (CVPR), Long Beach, CA, USA, Jun. 2019.
  161. D. K. Dennis, A. Shetty, A. Sevekari, K. Koishida, and V. Smith, “Progressive knowledge distillation: Building ensembles for efficient inference.” [Online]. Available: https://arxiv.org/pdf/2302.10093.pdf
  162. D. Wang, M. Li, L. Wu, V. Chandra, and Q. Liu, “Energy-aware neural architecture optimization with splitting steepest descent,” in Proc. 5th Wkshop. Energy Efficient Mach. Learn. Cogn. Comput. (EMC22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT), Vancouver, BC, Canada, Dec. 2019.
  163. H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba, and N. Wang, “A comprehensive survey on hardware-aware neural architecture search.” [Online]. Available: https://arxiv.org/pdf/2101.09336.pdf
  164. S. V. K. Srinivas, H. Nair, and V. Vidyasagar, “Hardware aware neural network architectures using FbNet.” [Online]. Available: https://arxiv.org/abs/1906.07214
  165. D. T. Speckhard, K. Misiunas, S. Perel, T. Zhu, S. Carlile, and M. Slaney, “Neural architecture search for energy efficient always-on audio machine learning,” Neural Comput. Appl., vol. 35, no. 16, pp. 12 133––12 144, Jun. 2023.
  166. C. Gong, Z. Jiang, D. Wang, Y. Lin, Q. Liu, and D. Z. Pan, “Mixed precision neural architecture search for energy efficient deep learning,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Westminster, CO, USA, Nov. 2019.
  167. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks.” [Online]. Available: https://arxiv.org/pdf/1801.04381.pdf
  168. P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for energy-efficient and enhanced pattern recognition,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Dresden, Germany, Mar. 2016.
  169. S. Laskaridis, A. Kouris, and N. D. Lane, “Adaptive inference through early-exit networks: Design, challenges and directions,” in Proc. Int. Wkshop. Embedded Mobile Deep Learn. (EMDL), Virtual Event, Jun. 2021.
  170. M.-A. Maleki, A. N.-Meybodi, M. Kamal, A. A.-Kusha, and M. Pedram, “An energy-efficient inference method in convolutional neural networks based on dynamic adjustment of the pruning level,” ACM Trans. Design Autom. Electron. Syst., vol. 26, no. 6, pp. 1–20, Jul. 2021.
  171. J. Guan, Y. Liu, Q. Liu, and J. Peng, “MobiSR: Efficient on-device super-resolution through heterogeneous mobile processors,” in Proc. Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), Los Cabos, Mexico, Oct. 2019.
  172. V. S. Marco, B. Taylor, Z. Wang, and Y. Elkhatib, “Optimizing deep learning inference on embedded systems through adaptive model selection,” ACM Trans. Embedded Comput. Syst., vol. 19, no. 1, pp. 1–28, Feb. 2020.
  173. J. Guan, Y. Liu, Q. Liu, and J. Peng, “Energy-efficient amortized inference with cascaded deep classifiers,” in Proc. 29th Int. Joint Conf. Artif. Intell. (IJCAI), Stockholm, Sweden, Jul. 2018.
  174. S. Teerapittayanon, B. McDanel, and H. Kunge, “BranchyNet: Fast inference via early exiting from deep neural networks,” in Proc. Conf. Pattern Recogn. (ICPR), Cancun, Mexico, Dec. 2016.
  175. Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic neural networks: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 7436–7456, Nov. 2022.
  176. B. Fang, X. Zeng, F. Zhang, H. Xu, and M. Zhang, “FlexDNN: Input-adaptive on-device deep learning for efficient mobile vision,” in ACM/IEEE Symp. Edge Comput. (SEC), San Jose, CA, USA, Nov. 2020.
  177. X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “SkipNet: Learning dynamic routing in convolutional networks,” in Proc. Eur. Conf. Comput. Vision (ECCV), Munich, Germany, Sep. 2018.
  178. Z. Wu, T. Nagarajan, A. Kumar, and S. Rennie, “BlockDrop: Dynamic inference paths in residual networks,” in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (CVPR), Salt Lake City, UT, USA, Jun. 2018.
  179. W. Hua, Y. Zhou, C. D. Sa, Z. Zhang, and G. Suh, “Channel gating neural networks,” in Proc. 33rd Conf. Neural Inf. Process. Syst. (NeurIPS), Los Cabos, Mexico, Oct. 2019.
  180. P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation offloading,” IEEE Commun. Survey Tuts., vol. 19, no. 3, pp. 1628–1656, Third Quart. 2017.
  181. S. Zhang, Q. Wu, S. Xu, and G. Y. Li, “Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 33–56, First Quart. 2017.
  182. W. Sun, J. Liu, and Y. Yue, “AI-enhanced offloading in edge computing: When machine learning meet industrial IoT,” IEEE Netw., vol. 33, no. 5, pp. 68–74, Sep./Oct. 2019.
  183. B. Yang, X. Cao, X. Li, Q. Zhang, and L. Qian, “Mobile-edge-computing-based hierarchical machine learning tasks distribution for IIoT,” IEEE Internet Things J., vol. 7, no. 3, pp. 2169–2180, Mar. 2020.
  184. H. Ma, Z. Zhou, X. Zhang, and X. Chen, “Toward carbon-neutral edge computing: Greening edge AI by harnessing spot and future carbon markets,” IEEE Internet Things J., vol. 10, no. 18, pp. 16 637–16 649, Sep. 2023.
  185. J. Redmon, S. Divvala, and R. G. A. Farhadi, “You only look once: Unified, real-time object detection.” [Online]. Available: https://arxiv.org/pdf/1506.02640.pdf
  186. X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile deep learning framework for edge video analytics,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), Honolulu, HI, USA, Apr. 2018.
  187. D. Xu, Q. Li, and H. Zhu, “Energy-saving computation offloading by joint data compression and resource allocation for mobile-edge computing,” IEEE Commun. Lett., vol. 23, no. 4, pp. 704–707, Apr. 2019.
  188. W. Wu, P. Yang, W. Zhang, C. Zhou, and X. Shen, “Accuracy-guaranteed collaborative DNN inference in industrial IoT via deep reinforcement learning,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 17, no. 7, pp. 4988–4998, Jul. 2021.
  189. X. Huang and S. Zhou, “Dynamic compression ratio selection for edge inference systems with hard deadlines,” IEEE Internet Things J., vol. 17, no. 7, pp. 8800–8810, Sep. 2020.
  190. C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, , and M. Xiao, “Joint configuration adaptation and bandwidth allocation for edge-based real-time video analytics,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), Toronto, ON, Canada, Jul. 2020.
  191. Z. He, H. Li, Z. Wang, S. Xia, and W. Zhu, “Adaptive compression for online computer vision: An edge reinforcement learning approach,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 17, no. 4, p. 118, Nov. 2021.
  192. A. Galanopoulos, J. A. A.-Romero, D. J. Leith, and G. Iosifidis, “AutoML for video analytics with edge computing,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), Vancouver, BC, Canada, May 2021.
  193. W. Fan, Z. Chen, Z. Hao, Y. Su, F. Wu, B. Tang, and Y. Liu, “DNN deployment, task offloading, and resource allocation for joint task inference in IIoT,” IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 1634–1646, Feb. 2023.
  194. E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand accelerating deep neural network inference via edge computing,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020.
  195. S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane, “SPINN: Synergistic progressive inference of neural networks over device and cloud,” in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), London, UK, Sep. 2020.
  196. Z. Zhao, K. Wang, N. Ling, and G. Xing, “EdgeML: An AutoML framework for real-time deep learning on the edge,” in Proc. Int. Conf. Internet-of-Things Design Implement. (IoTDI), Virtual Event, May 2021.
  197. H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD: Joint accuracy-and latency-aware deep structure decoupling for edge-cloud execution,” in Proc. IEEE Int. Conf. Parallel Distrib. Syst. (ICPADS), Singapore, Dec. 2018.
  198. A. E. Eshratifar, A. Esmaili, and M. Pedram, “BottleNet: A deep learning architecture for intelligent mobile cloud computing services,” in Proc. IEEE/ACM Int. Symp. Low Power Electron. Design (ISLPED), Lausanne, Switzerland, Jul. 2019.
  199. Z. Chen, K. Fan, S. Wang, L. Duan, W. Lin, and A. C. Kot, “Toward intelligent sensing: Intermediate deep feature compression,” IEEE Trans. Image Process., vol. 29, pp. 2230–2243, 2019.
  200. J. Shao and J. Zhang, “BottleNet++: An an end-to-end approach for feature compression in device-edge co-inference systems,” in Proc. IEEE Int. Conf. Commun. Wkshop. (ICCW), Virtual Event, Jun. 2020.
  201. M. Krouka, A. Elgabli, C. B. Issaid, and M. Bennis, “Energy-efficient model compression and splitting for collaborative inference over time-varying channels,” in Proc. IEEE Annu. Symp. Personal, Indoor Mobile Radio Commun. (PIMRC), Virtual Event, Sep. 2021.
  202. W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng, “Improving device-edge cooperative inference of deep learning via 2-step pruning,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM) Wkshop., Paris, France, Sep. 2019.
  203. X. Zhang, J. Shao, Y. Mao, and J. Zhang, “Communication-computation efficient device-edge co-inference via AutoML,” in Proc. Global Commun. Conf. (GLOBECOM), Madrid, Spain, Dec. 2021.
  204. J. Shao, H. Zhang, Y. Mao, and J. Zhang, “Branchy-GNN: A device-edge co-inference framework for efficient point cloud processing,” in Proc. IEEE Conf. Acoust., Speech, Signal Process. (ICASSP), Toronto, ON, Canada, Apr. 2020.
  205. R. Dong, Y. Mao, and J. Zhang, “Resource-constrained edge ai with early exit prediction,” J. Commun. Inf. Netw., vol. 7, no. 2, pp. 122–134, Jun. 2022.
  206. D. Hu and B. Krishnamachari, “Fast and accurate streaming CNN inference via communication compression on the edge,” in Proc. ACM/IEEE Int. Conf. Internet-of-Things Design Implement. (IoTDI), Sydney, NSW, Australia, Apr. 2020.
  207. Q. Lan, Q. Zeng, P. Popovski, D. Gündüz, and K. Huang, “Progressive feature transmission for split classification at the wireless edge,” IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 3837–3852, Jun. 2023.
  208. J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication for edge inference: An information bottleneck approach,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 197–211, Jan. 2022.
  209. N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” in Proc. Annu. Allerton Conf. Commun. Control Comput., Monticello, IL, USA, Oct. 1999.
  210. L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge: Cooperative DNN inference with adaptive workload partitioning over heterogeneous edge devices,” IEEE/ACM Trans. Netw., vol. 29, no. 2, pp. 595–608, Feb. 2021.
  211. S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep neural networks over the cloud, the edge and end devices,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS), Atlanta, GA, USA, Jun. 2017.
  212. J. Choi, Z. Hakimi, P. W. Shin, J. Sampson, and V. Narayanan, “Context-aware convolutional neural network over distributed system in collaborative computing,” in Proc. ACM/IEEE Design Autom. Conf. (DAC), Las Vegas, NV, USA, Jun. 2019.
  213. M. Singhal, V. Raghunathan, and A. Raghunathan, “Communication-efficient view-pooling for distributed multi-view neural networks,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Virtual Event, Jul. 2020.
  214. J. Shao, Y. Mao, and J. Zhang, “Task-oriented communication for multi-device cooperative edge inference,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 73–87, Jan. 2023.
  215. X. Tang, X. Chen, L. Zeng, S. Yu, and L. Chen, “Joint multi-user DNN partitioning and computational resource allocation for collaborative edge intelligence,” IEEE Internet Things J., vol. 8, no. 12, pp. 9511–9522, Dec. 2021.
  216. Z. Liu, Q. Lan, and K. Huang, “Resource allocation for multiuser edge inference with batching and early exiting,” IEEE J. Sel. Areas Commun., vol. 41, no. 4, pp. 1186–1200, Apr. 2023.
  217. Z. Hao, G. Xu, Y. Luo, H. Hu, J. An, and S. Mao, “Multi-agent collaborative inference via DNN decoupling: Intermediate feature compression and edge learning,” IEEE Trans. Mobile Comput., vol. 22, no. 10, pp. 6041–6055, Oct. 2023.
  218. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  219. Q. Shi, L. Liu, S. Zhang, and S. Cui, “Device-free sensing in OFDM cellular network,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1838–1853, Jun. 2022.
  220. D. Xu, X. Yu, D. W. K. Ng, A. Schmeink, and R. Schober, “Robust and secure resource allocation for ISAC systems: A novel optimization framework for variable-length snapshots,” IEEE Trans. Commun., vol. 70, no. 12, pp. 8196–8214, Dec. 2022.
  221. Z. Xiao and Y. Zeng, “Waveform design and performance analysis for full-duplex integrated sensing and communication,” IEEE J. Sel Areas Commun., vol. 40, no. 6, pp. 1823–1837, Jun. 2022.
  222. H. Hua, T. X. Han, and J. Xu, “MIMO integrated sensing and communication: CRB-rate tradeoff,” IEEE Trans. Wireless Commun., to appear.
  223. H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba, and N. Wang, “Hardware-aware neural architecture search: Survey and taxonomy,” in Proc. 30th Int. Joint Conf. Artif. Intell. (IJCAI), Virtual Event, Aug. 2021.
  224. C. Hao, J. Dotzel, J. Xiong, L. Benini, Z. Zhang, and D. Chen, “Enabling design methodologies and future trends for edge AI: Specialization and codesign,” IEEE Design Test, vol. 38, no. 4, pp. 7–26, Aug. 2021.
  225. Y. Shi, “Hardware/software co-design of deep learning accelerators,” https://www3.nd.edu/~scl/slides/codesign-nas.pdf.
  226. N. Y. A. A.-Fasfous, “Hardware-software co-design of deep neural networks: From handcrafted to automated design and deployment,” Technische Universitat Munchen Dr.-Ing. Dissertation, 2022.
  227. A. Madhavan, “Brain-inspired computing can help us create faster, more energy-efficient devices — If we win the race,” https://www.nist.gov/blogs/taking-measure/brain-inspired-computing-can-help-us-create-faster-more-energy-efficient, Mar. 2023.
  228. K. Yamazaki, V.-K. V.-Ho, D. Bulsara, and N. Le, “Spiking neural networks and their applications: A review,” Brain Sci., vol. 12, no. 7, p. 863, Jul. 2022.
  229. H. Jang, O. Simeone, B. Gardner, and A. Gruning, “An introduction to spiking neural networks: Probabilistic models, learning rules, and applications,” IEEE Signal Process. Mag., vol. 36, no. 6, pp. 64–77, Nov. 2019.
  230. A. Kass, “How neuromorphic computing will help industries drive AI at the edge,” https://medium.com/neuromorphic-computing-and-edge-ai/kass-on-neuromorphic-computing-7bfc5de81d5b, Dec. 2020.
  231. B. M, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello, and E. Beigné, “Spiking neural networks hardware implementations and challenges: A survey,” ACM J. Emerg. Techn. Comput. Syst., vol. 15, no. 2, pp. 10–19, Apr. 2019.
  232. Y. Venkatesha, Y. Kim, L. Tassiulas, and P. Panda, “Federated learning with spiking neural networks,” IEEE Trans. Signal Process., vol. 9, pp. 6183–6194, 2021.
  233. S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, “Compute-in-memory chips for deep learning: Recent trends and prospects,” IEEE Circuits Syst. Mag., vol. 21, no. 3, pp. 31–56, Third Quart. 2021.
  234. MYTHIC, “M1076 analog matrix processor - product brief,” https://mythic.ai/wp-content/uploads/2022/03/M1076-AMP-Product-Brief-v1.0-1.pdf, Jun. 2021.
  235. D. Ma, G. Lan, M. Hassan, W. Hu, and S. K. Das, “Sensing, computing, and communications for energy harvesting IoTs: A survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 1222–1250, Second Quart. 2020.
  236. M. Lv and E. Xu, “Deep learning on energy harvesting IoT devices: Survey and future challenges,” IEEE Access, vol. 10, pp. 124 999–125 014, Nov. 2022.
  237. G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the edge: Inference on intermittent embedded systems,” in Proc. 24th Int. Conf. Archit. Support Programming Languages Operating Syst. (ASPLOS), Providence, RI, USA, Apr. 2019.
  238. Y. Wu, Z. Wang, Z. Jia, Y. Shi, and J. Hu, “Intermittent inference with nonuniformly compressed multi-exit neural network for energy harvesting powered devices,” in Proc. 57th ACM/EDAC/IEEE Design Autom. Conf., Virtual Event, Jun. 2020.
  239. B. Güler and A. Yener, “Energy-harvesting distributed machine learning,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Melbourne, VIC, Australia, July 2021.
  240. R. Hamdi, M. Chen, A. B. S. M. Qaraqe, and H. V. Poor, “Federated learning over energy harvesting wireless networks,” IEEE Internet Things J., vol. 9, no. 1, pp. 92–103, Jan. 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yuyi Mao (44 papers)
  2. Xianghao Yu (68 papers)
  3. Kaibin Huang (186 papers)
  4. Ying-Jun Angela Zhang (49 papers)
  5. Jun Zhang (1008 papers)
Citations (10)
X Twitter Logo Streamline Icon: https://streamlinehq.com