Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QIENet: Quantitative irradiance estimation network using recurrent neural network based on satellite remote sensing data (2312.00299v1)

Published 1 Dec 2023 in stat.AP and cs.CV

Abstract: Global horizontal irradiance (GHI) plays a vital role in estimating solar energy resources, which are used to generate sustainable green energy. In order to estimate GHI with high spatial resolution, a quantitative irradiance estimation network, named QIENet, is proposed. Specifically, the temporal and spatial characteristics of remote sensing data of the satellite Himawari-8 are extracted and fused by recurrent neural network (RNN) and convolution operation, respectively. Not only remote sensing data, but also GHI-related time information (hour, day, and month) and geographical information (altitude, longitude, and latitude), are used as the inputs of QIENet. The satellite spectral channels B07 and B11 - B15 and time are recommended as model inputs for QIENet according to the spatial distributions of annual solar energy. Meanwhile, QIENet is able to capture the impact of various clouds on hourly GHI estimates. More importantly, QIENet does not overestimate ground observations and can also reduce RMSE by 27.51%/18.00%, increase R2 by 20.17%/9.42%, and increase r by 8.69%/3.54% compared with ERA5/NSRDB. Furthermore, QIENet is capable of providing a high-fidelity hourly GHI database with spatial resolution 0.02{\deg} * 0.02{\deg}(approximately 2km * 2km) for many applied energy fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. The variability and seasonality in the ratio of photosynthetically active radiation to solar radiation: A simple empirical model of the ratio. Int. J. Appl. Earth Obs. Geoinf., 108, 102724. doi:10.1016/j.jag.2022.102724.
  2. Modifications of the Heliosat procedure for irradiance estimates from satellite images. Sol. Energy, 56, 207–212. doi:10.1016/0038-092X(95)00092-6.
  3. A method for the determination of the global solar radiation from meteorological satellite data. Sol. Energy, 37, 31–39. doi:10.1016/0038-092X(86)90104-0.
  4. Estimation of all-sky all-wave daily net radiation at high latitudes from MODIS data. Remote Sens. Environ., 245, 111842. doi:10.1016/j.rse.2020.111842.
  5. Estimating half-hourly solar radiation over the Continental United States using GOES-16 data with iterative random forest. Renewable Energy, 178, 916–929. doi:10.1016/j.renene.2021.06.129.
  6. Estimation of high-resolution solar irradiance data using optimized semi-empirical satellite method and GOES-16 imagery. Sol. Energy, 241, 404–415. doi:10.1016/j.solener.2022.06.013.
  7. Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements. Atmos. Meas. Tech., 11, 2501–2521. doi:10.5194/amt-11-2501-2018.
  8. Satellite estimation of solar irradiance at the surface of the Earth and of surface albedo using a physical model applied to Metcosat data. J. Appl. Meteorol. Clim., 26, 79 – 87. doi:10.1175/1520-0450(1987)026<0079:SEOSIA>2.0.CO;2.
  9. Estimating surface solar irradiance from METEOSAT SEVIRI-derived cloud properties. Remote Sens. Environ., 112, 3131–3141. doi:10.1016/j.rse.2008.03.012.
  10. Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM Comput. Surv., 27, 326–327. doi:10.1145/212094.212114.
  11. Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China. Renewable Sustainable Energy Rev., 105, 168–186. doi:10.1016/j.rser.2019.01.040.
  12. A census from heaven: Unraveling the potential of deep learning and Earth Observation for intra-urban population mapping in data scarce environments. Int. J. Appl. Earth Obs. Geoinf., 114, 103013. doi:10.1016/j.jag.2022.103013.
  13. Graves, A. (2013). Generating sequences with recurrent neural networks. CoRR, abs/1308.0850. arXiv:1308.0850v5.
  14. Hybrid speech recognition with deep bidirectional LSTM. In ASRU (pp. 273--278). doi:10.1109/ASRU.2013.6707742.
  15. Validation of direct normal irradiance predictions under arid conditions: A review of radiative models and their turbidity-dependent performance. Renewable Sustainable Energy Rev., 45, 379--396. doi:10.1016/j.rser.2015.01.065.
  16. Spatial representativeness of ground-based solar radiation measurements-Extension to the full Meteosat disk. Journal of Geophysical Research: Atmospheres, 119, 11760--11771. doi:10.1002/2014JD021946.
  17. Estimation of high-resolution land surface net shortwave radiation from AVIRIS data: Algorithm development and preliminary results. Remote Sens. Environ., 167, 20--30. doi:10.1016/j.rse.2015.03.021.
  18. On agricultural drought monitoring in Australia using Himawari-8 geostationary thermal infrared observations. Int. J. Appl. Earth Obs. Geoinf., 91, 102153. doi:10.1016/j.jag.2020.102153.
  19. Estimating surface solar irradiance from satellites: Past, present, and future perspectives. Remote Sens. Environ., 233, 111371. doi:10.1016/j.rse.2019.111371.
  20. Example-based explainable AI and its application for remote sensing image classification. Int. J. Appl. Earth Obs. Geoinf., 118, 103215. doi:10.1016/j.jag.2023.103215.
  21. Estimating hourly surface solar irradiance from GK2A/AMI data using machine learning approach around Korea. Remote Sensing, 14. doi:10.3390/rs14081840.
  22. Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data. Appl. Energy, 270, 115178. doi:10.1016/j.apenergy.2020.115178.
  23. A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data. Renewable Sustainable Energy Rev., 114, 109327. doi:10.1016/j.rser.2019.109327.
  24. Single-footprint retrieval of clear-sky surface longwave radiation from hyperspectral AIRS data. Int. J. Appl. Earth Obs. Geoinf., 110, 102802. doi:10.1016/j.jag.2022.102802.
  25. High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation. Nat. Commun., 12, 5738. doi:10.1038/s41467-021-25720-2.
  26. A global inventory of photovoltaic solar energy generating units. Nature, 598, 604--610. doi:10.1038/s41586-021-03957-7.
  27. Suncast: Solar irradiance nowcasting from geosynchronous satellite data. CoRR, abs/2201.06173. arXiv:2201.06173.
  28. Analysis of ANN-based daily global horizontal irradiance prediction models with different meteorological parameters: a case study of mountainous region of india. Int. J. Green Energy, 18, 1007--1026. doi:10.1080/15435075.2021.1890085.
  29. Deep learning models for solar irradiance forecasting: A comprehensive review. J. Cleaner Prod., 318, 128566. doi:10.1016/j.jclepro.2021.128566.
  30. Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance. J. Cleaner Prod., 279, 123285. doi:10.1016/j.jclepro.2020.123285.
  31. Long short term memory-convolutional neural network based deep hybrid approach for solar irradiance forecasting. Appl. Energy, 295, 117061. doi:10.1016/j.apenergy.2021.117061.
  32. Deep learning in multimodal remote sensing data fusion: A comprehensive review. Int. J. Appl. Earth Obs. Geoinf., 112, 102926. doi:10.1016/j.jag.2022.102926.
  33. Solarnet: A convolutional neural network-based framework for rooftop solar potential estimation from aerial imagery. Int. J. Appl. Earth Obs. Geoinf., 116, 103098. doi:10.1016/j.jag.2022.103098.
  34. Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks. Energy, 36, 5356--5365. doi:10.1016/j.energy.2011.06.044.
  35. Mapping incident photosynthetically active radiation from MODIS data over China. Remote Sens. Environ., 112, 998--1009. doi:10.1016/j.rse.2007.07.021.
  36. Global potential for harvesting drinking water from air using solar energy. Nature, 598, 611--617. doi:10.1038/s41586-021-03900-w.
  37. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data. Energy, 36, 3179--3188. doi:10.1016/j.energy.2011.03.007.
  38. Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. Renewable Energy, 113, 303--311. doi:10.1016/j.renene.2017.01.061.
  39. Uncertainty assessment of surface net radiation derived from Landsat images. Remote Sens. Environ., 175, 251--270. doi:10.1016/j.rse.2015.12.054.
  40. Moradi, I. (2009). Quality control of global solar radiation using sunshine duration hours. Energy, 34, 1--6. doi:10.1016/j.energy.2008.09.006.
  41. Analysis of minute-scale variability for enhanced separation of direct and diffuse solar irradiance components using machine learning algorithms. Energy, 241, 122921. doi:10.1016/j.energy.2021.122921.
  42. A support vector machine-firefly algorithm-based model for global solar radiation prediction. Sol. Energy, 115, 632--644. doi:10.1016/j.solener.2015.03.015.
  43. Estimation of sub-canopy solar radiation from LiDAR discrete returns in mixed temporal forest of Bialowieza, Poland. Int. J. Appl. Earth Obs. Geoinf., 79, 116--132. doi:10.1016/j.jag.2019.03.005.
  44. A review of satellite methods to derive surface shortwave irradiance. Remote Sens. Environ., 51, 108--124. doi:10.1016/0034-4257(94)00069-Y.
  45. Revision of ground albedo estimation in Heliosat scheme for deriving solar radiation from SEVIRI HRV channel of Meteosat satellite. Sol. Energy, 86, 275--282. doi:10.1016/j.solener.2011.09.030.
  46. Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets. Sol. Energy, 132, 25--37. doi:10.1016/j.solener.2016.03.001.
  47. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment. J. Atmos. Sol. Terr. Phys., 155, 62--70. doi:10.1016/j.jastp.2017.02.002.
  48. An advanced ANN-based method to estimate hourly solar radiation from multi-spectral MSG imagery. Sol. Energy, 115, 494--504. doi:10.1016/j.solener.2015.03.014.
  49. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy, 77, 159--169. doi:10.1016/j.solener.2004.04.017.
  50. Best practices handbook for the collection and use of solar resource data for solar energy applications: Third edition. Technical Report NREL/TP-5D00-77635. URL: https://www.nrel.gov/docs/fy21osti/77635.pdf.
  51. The national solar radiation data base (NSRDB). Renewable Sustainable Energy Rev., 89, 51--60. doi:10.1016/j.rser.2018.03.003.
  52. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. CoRR, abs/1506.04214. arXiv:1506.04214.
  53. Estimation of solar radiation using a neural network based on radiative transfer. J. Geophys. Res., 116, D08215. doi:10.1029/2009JD013337.
  54. Retrieval of cloud microphysical properties from Himawari-8/AHI infrared channels and its application in surface shortwave downward radiation estimation in the sun glint region. Remote Sens. Environ., 290, 113548. doi:10.1016/j.rse.2023.113548.
  55. Quality control and estimation of global solar radiation in China. Sol. Energy, 84, 466--475. doi:10.1016/j.solener.2010.01.006.
  56. Estimation methods for global solar radiation: Case study evaluation of five different approaches in central Spain. Renewable Sustainable Energy Rev., 77, 1098--1113. doi:10.1016/j.rser.2016.11.222.
  57. Forest mapping and monitoring in africa using sentinel-2 data and deep learning. Int. J. Appl. Earth Obs. Geoinf., 111, 102840. doi:10.1016/j.jag.2022.102840.
  58. Estimating clear-sky all-wave net radiation from combined visible and shortwave infrared (VSWIR) and thermal infrared (TIR) remote sensing data. Remote Sens. Environ., 167, 31--39. doi:10.1016/j.rse.2015.03.022.
  59. Solar radiation prediction using different techniques: model evaluation and comparison. Renewable Sustainable Energy Rev., 61, 384--397. doi:10.1016/j.rser.2016.04.024.
  60. A global long-term (1981-2019) daily land surface radiation budget product from AVHRR satellite data using a residual convolutional neural network. Earth Syst. Sci. Data, 14, 2315--2341. doi:10.5194/essd-14-2315-2022.
  61. A method for daily global solar radiation estimation from two instantaneous values using MODIS atmospheric products. Energy, 111, 117--125. doi:10.1016/j.energy.2016.05.095.
  62. Spatial mapping of short-term solar radiation prediction incorporating geostationary satellite images coupled with deep convolutional LSTM networks for South Korea. Environ. Res. Lett., 15, 094025. doi:10.1088/1748-9326/ab9467.
  63. All-sky total and direct surface shortwave downward radiation (SWDR) estimation from satellite: Applications to MODIS and Himawari-8. Int. J. Appl. Earth Obs. Geoinf., 102, 102380. doi:10.1016/j.jag.2021.102380.
  64. Solar photovoltaic interventions have reduced rural poverty in China. Nat. Commun., 11, 1969. doi:10.1038/s41467-020-15826-4.
  65. Beyond being wise after the event: Combining spatial, temporal and spectral information for Himawari-8 early-stage wildfire detection. Int. J. Appl. Earth Obs. Geoinf., 124, 103506. doi:10.1016/j.jag.2023.103506.
  66. Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ., 152, 318--332. doi:10.1016/j.rse.2014.07.003.
  67. Evaluation of reanalysis surface incident solar radiation data in China. Sci. Rep., 10, 3494. doi:10.1038/s41598-020-60460-1.
  68. Evaluating the potential of H8/AHI geostationary observations for monitoring vegetation phenology over different ecosystem types in northern China. Int. J. Appl. Earth Obs. Geoinf., 112, 102933. doi:10.1016/j.jag.2022.102933.
  69. A review on global solar radiation prediction with machine learning models in a comprehensive perspective. Energy Convers. Manage., 235, 113960. doi:10.1016/j.enconman.2021.113960.
Citations (1)

Summary

We haven't generated a summary for this paper yet.