Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Consumption--Investment Problems under Time-Varying Incomplete Preferences (2312.00266v2)

Published 1 Dec 2023 in q-fin.MF, econ.GN, and q-fin.EC

Abstract: The main objective of this paper is to develop a martingale-type solution to optimal consumption--investment choice problems ([Merton, 1969] and [Merton, 1971]) under time-varying incomplete preferences driven by externalities such as patience, socialization effects, and market volatility. The market is composed of multiple risky assets and multiple consumption goods, while in addition there are multiple fluctuating preference parameters with inexact values connected to imprecise tastes. Utility maximization is a multi-criteria problem with possibly function-valued criteria. To come up with a complete characterization of the solutions, first we motivate and introduce a set-valued stochastic process for the dynamics of multi-utility indices and formulate the optimization problem in a topological vector space. Then, we modify a classical scalarization method allowing for infiniteness and randomness in dimensions and prove results of equivalence to the original problem. Illustrative examples are given to demonstrate practical interests and method applicability progressively. The link between the original problem and a dual problem is also discussed, relatively briefly. Finally, using Malliavin calculus with stochastic geometry, we find optimal investment policies to be generally set-valued, each of whose selectors admits a four-way decomposition involving an additional indecisiveness risk-hedging portfolio. Our results touch on new directions for optimal consumption--investment choices in the presence of incomparability and time inconsistency, also signaling potentially testable assumptions on the variability of asset prices. Simulation techniques for set-valued processes are studied for how solved optimal policies can be computed in practice.

Citations (1)

Summary

We haven't generated a summary for this paper yet.