Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Star colouring and locally constrained graph homomorphisms (2312.00086v1)

Published 30 Nov 2023 in math.CO and cs.DM

Abstract: Dvo\v{r}\'ak, Mohar and \v{S}\'amal (J. Graph Theory, 2013) proved that for every 3-regular graph $G$, the line graph of $G$ is 4-star colourable if and only if $G$ admits a locally bijective homomorphism to the cube $Q_3$. We generalise this result as follows: for $p\geq 2$, a $K_{1,p+1}$-free $2p$-regular graph $G$ admits a $(p + 2)$-star colouring if and only if $G$ admits a locally bijective homomorphism to a fixed $2p$-regular graph named $G_{2p}$. We also prove the following: (i) for $p\geq 2$, a $2p$-regular graph $G$ admits a $(p + 2)$-star colouring if and only if $G$ has an orientation $\vec{G}$ that admits an out-neighbourhood bijective homomorphism to a fixed orientation $\vec{G_{2p}}$ of $G2p$; (ii) for every 3-regular graph $G$, the line graph of $G$ is 4-star colourable if and only if $G$ is bipartite and distance-two 4-colourable; and (iii) it is NP-complete to check whether a planar 4-regular 3-connected graph is 4-star colourable.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shalu M. A. (5 papers)
  2. Cyriac Antony (6 papers)