Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Adaptive Framework for Generalizing Network Traffic Prediction towards Uncertain Environments (2311.18824v1)

Published 30 Nov 2023 in cs.IT, cs.LG, cs.NI, eess.SP, and math.IT

Abstract: We have developed a new framework using time-series analysis for dynamically assigning mobile network traffic prediction models in previously unseen wireless environments. Our framework selectively employs learned behaviors, outperforming any single model with over a 50% improvement relative to current studies. More importantly, it surpasses traditional approaches without needing prior knowledge of a cell. While this paper focuses on network traffic prediction using our adaptive forecasting framework, this framework can also be applied to other machine learning applications in uncertain environments. The framework begins with unsupervised clustering of time-series data to identify unique trends and seasonal patterns. Subsequently, we apply supervised learning for traffic volume prediction within each cluster. This specialization towards specific traffic behaviors occurs without penalties from spatial and temporal variations. Finally, the framework adaptively assigns trained models to new, previously unseen cells. By analyzing real-time measurements of a cell, our framework intelligently selects the most suitable cluster for that cell at any given time, with cluster assignment dynamically adjusting to spatio-temporal fluctuations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C. Zhang, “Artificial intelligence-enabled cellular networks: A critical path to beyond-5G and 6G,” IEEE Wireless Communications, vol. 27, no. 2, pp. 212–217, Apr. 2020.
  2. C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wireless networking: A survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2224–2287, 2019.
  3. M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Understanding O-RAN: Architecture, interfaces, algorithms, security, and research challenges,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 1376–1411, 2023.
  4. J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang, “Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep learning approach,” in IEEE INFOCOM, 2017.
  5. C.-W. Huang, C.-T. Chiang, and Q. Li, “A study of deep learning networks on mobile traffic forecasting,” in IEEE PIMRC, 2017.
  6. L. Chen, D. Yang, D. Zhang, C. Wang, J. Li, and T.-M.-T. Nguyen, “Deep mobile traffic forecast and complementary base station clustering for C-RAN optimization,” Journal of Network and Computer Applications, vol. 121, pp. 59–69, 2018.
  7. C. Zhang and P. Patras, “Long-term mobile traffic forecasting using deep spatio-temporal neural networks,” in ACM MobiHoc, Jun. 2018.
  8. C. Zhang, H. Zhang, D. Yuan, and M. Zhang, “Citywide cellular traffic prediction based on densely connected convolutional neural networks,” IEEE Communications Letters, vol. 22, no. 8, pp. 1656–1659, 2018.
  9. C. Zhang, H. Zhang, J. Qiao, D. Yuan, and M. Zhang, “Deep transfer learning for intelligent cellular traffic prediction based on cross-domain big data,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1389–1401, 2019.
  10. C. Qiu, Y. Zhang, Z. Feng, P. Zhang, and S. Cui, “Spatio-temporal wireless traffic prediction with recurrent neural network,” IEEE Wireless Communications Letters, vol. 7, no. 4, pp. 554–557, 2018.
  11. J. Feng, X. Chen, R. Gao, M. Zeng, and Y. Li, “Deeptp: An end-to-end neural network for mobile cellular traffic prediction,” IEEE Network, vol. 32, no. 6, pp. 108–115, 2018.
  12. Y. Gao, X. Wei, L. Zhou, and H. Lv, “A deep learning framework with spatial-temporal attention mechanism for cellular traffic prediction,” in IEEE Globecom Workshops, 2019.
  13. D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Pérez, “DeepCog: Optimizing Resource Provisioning in Network Slicing With AI-Based Capacity Forecasting,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 2, pp. 361–376, Feb. 2020.
  14. Z. Wang and V. W. Wong, “Cellular traffic prediction using deep convolutional neural network with attention mechanism,” in IEEE ICC, 2022.
  15. X. Chen, G. Chuai, K. Zhang, and W. Gao, “Spatial-temporal cellular traffic prediction: A novel method based on causality and graph attention network,” in IEEE WCNC, 2023.
  16. X. Wang, Z. Zhou, Z. Yang, Y. Liu, and C. Peng, “Spatio-temporal analysis and prediction of cellular traffic in metropolis,” in IEEE ICNP, 2017.
  17. S. Zhao, X. Jiang, G. Jacobson, R. Jana, W.-L. Hsu, R. Rustamov, M. Talasila, S. A. Aftab, Y. Chen, and C. Borcea, “Cellular network traffic prediction incorporating handover: A graph convolutional approach,” in IEEE SECON, 2020.
  18. L. Fang, X. Cheng, H. Wang, and L. Yang, “Mobile demand forecasting via deep graph-sequence spatiotemporal modeling in cellular networks,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 3091–3101, 2018.
  19. E. Tuna and A. Soysal, “Multivariate spatio-temporal cellular traffic prediction with handover based clustering,” in CISS, Mar. 2022.
  20. ——, “Multivariate and multi-step traffic prediction for NextG networks with SLA violation constraints,” in IEEE BalkanCom, 2023.
  21. ——, “Multivariate, multi-step, and spatiotemporal traffic prediction for NextG network slicing under SLA constraints,” arXiv:2309.03898, Sep. 2023.
  22. R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz, M. Payne, R. Yurchak, M. Rußwurm, K. Kolar, and E. Woods, “Tslearn, a machine learning toolkit for time series data,” Journal of Machine Learning Research, vol. 21, no. 118, pp. 1–6, 2020.
  23. F. Petitjean, A. Ketterlin, and P. Gancarski, “A global averaging method for dynamic time warping, with applications to clustering,” Pattern Recognition, vol. 44, pp. 678–, 03 2011.

Summary

We haven't generated a summary for this paper yet.