Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 TPS
Gemini 2.5 Pro 52 TPS Pro
GPT-5 Medium 43 TPS
GPT-5 High 37 TPS Pro
GPT-4o 102 TPS
GPT OSS 120B 483 TPS Pro
Kimi K2 240 TPS Pro
2000 character limit reached

$\mathbb{Z}_2\times \mathbb{Z}_2$ Equivariant Quantum Neural Networks: Benchmarking against Classical Neural Networks (2311.18744v3)

Published 30 Nov 2023 in quant-ph, cs.LG, hep-ph, and stat.ML

Abstract: This paper presents a comprehensive comparative analysis of the performance of Equivariant Quantum Neural Networks (EQNN) and Quantum Neural Networks (QNN), juxtaposed against their classical counterparts: Equivariant Neural Networks (ENN) and Deep Neural Networks (DNN). We evaluate the performance of each network with two toy examples for a binary classification task, focusing on model complexity (measured by the number of parameters) and the size of the training data set. Our results show that the $\mathbb{Z}_2\times \mathbb{Z}_2$ EQNN and the QNN provide superior performance for smaller parameter sets and modest training data samples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning. arXiv, 2022. arXiv:2209.07559.
  2. A Living Review of Machine Learning for Particle Physics. arXiv, 2021. arXiv:2102.02770.
  3. Group Equivariant Convolutional Networks. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 Jun 2016; Balcan, M.F.; Weinberger, K.Q., Eds.; Volume 48, pp. 2990–2999.
  4. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Pereira, F.; Burges, C.; Bottou, L.; Weinberger, K., Eds.; Curran Associates, Inc.: Sydney, New South Wales, 2012, Volume 25.
  5. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589.
  6. Lorentz Group Equivariant Neural Network for Particle Physics. In Proceedings of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020; III, H.D.; Singh, A., Eds.; Volume 119, pp. 992–1002.
  7. Gauge Equivariant Convolutional Networks and the Icosahedral CNN. arXiv, 2019, 2. arXiv:1902.04615.
  8. Sampling using S⁢U⁢(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) gauge equivariant flows. Phys. Rev. D 2021, 103, 074504. https://doi.org/10.1103/PhysRevD.103.074504.
  9. Lattice Gauge Equivariant Convolutional Neural Networks. Phys. Rev. Lett. 2022, 128, 032003. https://doi.org/10.1103/PhysRevLett.128.032003.
  10. Equivariant Energy Flow Networks for Jet Tagging. Phys. Rev. D 2021, 103, 074022. https://doi.org/10.1103/PhysRevD.103.074022.
  11. Generalization capabilities of translationally equivariant neural networks. Phys. Rev. D 2021, 104, 074504. https://doi.org/10.1103/PhysRevD.104.074504.
  12. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. https://doi.org/10.22331/q-2018-08-06-79.
  13. Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. https://doi.org/10.1007/BF02650179.
  14. Quantum Simulation. Rev. Mod. Phys. 2014, 86, 153. https://doi.org/10.1103/RevModPhys.86.153.
  15. Quantum algorithm for Feynman loop integrals. JHEP 2022, 5, 100. https://doi.org/10.1007/JHEP05(2022)100.
  16. Quantum walk approach to simulating parton showers. Phys. Rev. D 2022, 106, 056002. https://doi.org/10.1103/PhysRevD.106.056002.
  17. Partonic collinear structure by quantum computing. Phys. Rev. D 2022, 105, L111502. https://doi.org/10.1103/PhysRevD.105.L111502.
  18. Towards a quantum computing algorithm for helicity amplitudes and parton showers. Phys. Rev. D 2021, 103, 076020. https://doi.org/10.1103/PhysRevD.103.076020.
  19. Quantum Algorithms for Fermionic Quantum Field Theories. arXiv, 2014. arXiv:1404.7115.
  20. Preskill, J. Simulating quantum field theory with a quantum computer. PoS 2018, LATTICE2018, 024. https://doi.org/10.22323/1.334.0024.
  21. Quantum Algorithm for High Energy Physics Simulations. Phys. Rev. Lett. 2021, 126, 062001. https://doi.org/10.1103/PhysRevLett.126.062001.
  22. Quantum computing for quantum tunneling. Phys. Rev. D 2021, 103, 016008. https://doi.org/10.1103/PhysRevD.103.016008.
  23. Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2021, 2, 010349. https://doi.org/10.1103/PRXQuantum.2.010349.
  24. Toward simulating quantum field theories with controlled phonon-ion dynamics: A hybrid analog-digital approach. Phys. Rev. Res. 2021, 3, 043072. https://doi.org/10.1103/PhysRevResearch.3.043072.
  25. Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 2017, 550, 375–379. https://doi.org/10.1038/nature24047.
  26. Unsupervised event classification with graphs on classical and photonic quantum computers. JHEP 2020, 21, 170. https://doi.org/10.1007/JHEP08(2021)170.
  27. Application of quantum machine learning using the quantum variational classifier method to high energy physics analysis at the LHC on IBM quantum computer simulator and hardware with 10 qubits. J. Phys. G 2021, 48, 125003. https://doi.org/10.1088/1361-6471/ac1391.
  28. Quantum Machine Learning for Particle Physics using a Variational Quantum Classifier. JHEP 2021, 2, 212. https://doi.org/10.1007/JHEP02(2021)212.
  29. Quantum optimization of complex systems with a quantum annealer. Phys. Rev. A 2022, 106, 042607. https://doi.org/10.1103/PhysRevA.106.042607.
  30. Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC. Phys. Rev. Res. 2021, 3, 033221. https://doi.org/10.1103/PhysRevResearch.3.033221.
  31. Hybrid Quantum-Classical Graph Convolutional Network. arXiv, 2021. arXiv:2101.06189.
  32. Event Classification with Quantum Machine Learning in High-Energy Physics. Comput. Softw. Big Sci. 2021, 5, 2. https://doi.org/10.1007/s41781-020-00047-7.
  33. Classical versus quantum: Comparing tensor-network-based quantum circuits on Large Hadron Collider data. Phys. Rev. A 2022, 106, 062423. https://doi.org/10.1103/PhysRevA.106.062423.
  34. Anomaly detection in high-energy physics using a quantum autoencoder. Phys. Rev. D 2022, 105, 095004. https://doi.org/10.1103/PhysRevD.105.095004.
  35. Approximately Equivariant Quantum Neural Network for p⁢4⁢m𝑝4𝑚p4mitalic_p 4 italic_m Group Symmetries in Images. In Proceedings of the 2023 International Conference on Quantum Computing and Engineering, Bellevue, WA, USA, 17–22 September 2023.
  36. Theory for Equivariant Quantum Neural Networks. arXiv, 2022. arXiv:2210.08566.
  37. Exploiting Symmetry in Variational Quantum Machine Learning. PRX Quantum 2023, 4, 010328. https://doi.org/10.1103/prxquantum.4.010328.
  38. Reflection equivariant quantum neural networks for enhanced image classification. Mach. Learn. Sci. Technol. 2023, 4, 035027. https://doi.org/10.1088/2632-2153/acf096.
  39. Equivariant quantum circuits for learning on weighted graphs. npj Quantum Inf. 2023, 9, 47.
  40. Kim, I.W. Algebraic Singularity Method for Mass Measurement with Missing Energy. Phys. Rev. Lett. 2010, 104, 081601. https://doi.org/10.1103/PhysRevLett.104.081601.
  41. Kinematic Variables and Feature Engineering for Particle Phenomenology. Rev. Mod. Phys. 2022, 95, 045004.
  42. Kersting, N. On Measuring Split-SUSY Gaugino Masses at the LHC. Eur. Phys. J. C 2009, 63, 23–32. https://doi.org/10.1140/epjc/s10052-009-1063-6.
  43. Improving SUSY Spectrum Determinations at the LHC with Wedgebox Technique. JHEP 2011, 5, 095. https://doi.org/10.1007/JHEP05(2011)095.
  44. Using kinematic boundary lines for particle mass measurements and disambiguation in SUSY-like events with missing energy. JHEP 2009, 5, 094. https://doi.org/10.1088/1126-6708/2009/05/094.
  45. Edge Detecting New Physics the Voronoi Way. EPL 2016, 114, 41001. https://doi.org/10.1209/0295-5075/114/41001.
  46. Detecting kinematic boundary surfaces in phase space: Particle mass measurements in SUSY-like events. JHEP 2017, 6, 092. https://doi.org/10.1007/JHEP06(2017)092.
  47. PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics. arXiv, 2022. arXiv:2211.00454.
  48. Lorentz group equivariant autoencoders. Eur. Phys. J. C 2023, 83, 485. https://doi.org/10.1140/epjc/s10052-023-11633-5.
  49. EPiC-GAN: Equivariant point cloud generation for particle jets. SciPost Phys. 2023, 15, 130. https://doi.org/10.21468/SciPostPhys.15.4.130.
  50. A General Framework for Equivariant Neural Networks on Reductive Lie Groups. arXiv, 2023. arXiv:2306.00091.
  51. Data re-uploading for a universal quantum classifier. Quantum 2020, 4, 226. https://doi.org/10.22331/q-2020-02-06-226.
  52. Ahmed, S. Data-Reuploading Classifier. Available online: https://pennylane.ai/qml/demos/tutorial_data_reuploading_classifier (accessed on 9 March 2024).
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.