Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Flow Simulations using Online Dynamic Mode Decomposition (2311.18715v1)

Published 30 Nov 2023 in physics.flu-dyn, cs.NA, and math.NA

Abstract: We develop an on-the-fly reduced-order model (ROM) integrated with a flow simulation, gradually replacing a corresponding full-order model (FOM) of a physics solver. Unlike offline methods requiring a separate FOM-only simulation prior to model reduction, our approach constructs a ROM dynamically during the simulation, replacing the FOM when deemed credible. Dynamic mode decomposition (DMD) is employed for online ROM construction, with a single snapshot vector used for rank-1 updates in each iteration. Demonstrated on a flow over a cylinder with Re = 100, our hybrid FOM/ROM simulation is verified in terms of the Strouhal number, resulting in a 4.4 times speedup compared to the FOM solver.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of fluid mechanics, vol. 656, pp. 5–28, 2010.
  2. G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decomposition in the analysis of turbulent flows,” Annual review of fluid mechanics, vol. 25, no. 1, pp. 539–575, 1993.
  3. K. Carlberg, Y. Choi, and S. Sargsyan, “Conservative model reduction for finite-volume models,” Journal of Computational Physics, vol. 371, pp. 280–314, 2018.
  4. Y. Choi, G. Boncoraglio, S. Anderson, D. Amsallem, and C. Farhat, “Gradient-based constrained optimization using a database of linear reduced-order models,” Journal of Computational Physics, vol. 423, p. 109787, 2020.
  5. Y. Choi and K. Carlberg, “Space–time least-squares petrov–galerkin projection for nonlinear model reduction,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A26–A58, 2019.
  6. Y. Choi, P. Brown, W. Arrighi, R. Anderson, and K. Huynh, “Space–time reduced order model for large-scale linear dynamical systems with application to boltzmann transport problems,” Journal of Computational Physics, vol. 424, p. 109845, 2021.
  7. C. Hoang, Y. Choi, and K. Carlberg, “Domain-decomposition least-squares petrov–galerkin (dd-lspg) nonlinear model reduction,” Computer methods in applied mechanics and engineering, vol. 384, p. 113997, 2021.
  8. S. McBane and Y. Choi, “Component-wise reduced order model lattice-type structure design,” Computer methods in applied mechanics and engineering, vol. 381, p. 113813, 2021.
  9. Y. Choi, D. Coombs, and R. Anderson, “Sns: A solution-based nonlinear subspace method for time-dependent model order reduction,” SIAM Journal on Scientific Computing, vol. 42, no. 2, pp. A1116–A1146, 2020.
  10. D. M. Copeland, S. W. Cheung, K. Huynh, and Y. Choi, “Reduced order models for lagrangian hydrodynamics,” Computer Methods in Applied Mechanics and Engineering, vol. 388, p. 114259, 2022.
  11. Y. Kim, K. Wang, and Y. Choi, “Efficient space–time reduced order model for linear dynamical systems in python using less than 120 lines of code,” Mathematics, vol. 9, no. 14, p. 1690, 2021.
  12. W. D. Fries, X. He, and Y. Choi, “Lasdi: Parametric latent space dynamics identification,” Computer Methods in Applied Mechanics and Engineering, vol. 399, p. 115436, 2022.
  13. J. T. Lauzon, S. W. Cheung, Y. Shin, Y. Choi, D. M. Copeland, and K. Huynh, “S-opt: A points selection algorithm for hyper-reduction in reduced order models,” arXiv preprint arXiv:2203.16494, 2022.
  14. S. W. Cheung, Y. Choi, D. M. Copeland, and K. Huynh, “Local lagrangian reduced-order modeling for the rayleigh-taylor instability by solution manifold decomposition,” Journal of Computational Physics, vol. 472, p. 111655, 2023.
  15. S. McBane, Y. Choi, and K. Willcox, “Stress-constrained topology optimization of lattice-like structures using component-wise reduced order models,” Computer Methods in Applied Mechanics and Engineering, vol. 400, p. 115525, 2022.
  16. P.-H. Tsai, S. W. Chung, D. Ghosh, J. Loffeld, Y. Choi, and J. L. Belof, “Accelerating kinetic simulations of electrostatic plasmas with reduced-order modeling,” 2023.
  17. SIAM, 2016.
  18. S. W. Cheung, Y. Choi, H. K. Springer, and T. Kadeethum, “Data-scarce surrogate modeling of shock-induced pore collapse process,” 2023.
  19. Q. A. Huhn, M. E. Tano, J. C. Ragusa, and Y. Choi, “Parametric dynamic mode decomposition for reduced order modeling,” Journal of Computational Physics, vol. 475, p. 111852, 2023.
  20. Y. Choi, G. Oxberry, D. White, and T. Kirchdoerfer, “Accelerating design optimization using reduced order models,” arXiv preprint arXiv:1909.11320, 2019.
  21. T. Wen and M. J. Zahr, “A globally convergent method to accelerate large-scale optimization using on-the-fly model hyperreduction: application to shape optimization,” Journal of Computational Physics, vol. 484, p. 112082, 2023.
  22. I. Rocha, F. van der Meer, and L. J. Sluys, “An adaptive domain-based pod/ecm hyper-reduced modeling framework without offline training,” Computer Methods in Applied Mechanics and Engineering, vol. 358, p. 112650, 2020.
  23. C. Huang and K. Duraisamy, “Predictive reduced order modeling of chaotic multi-scale problems using adaptively sampled projections,” arXiv preprint arXiv:2301.09006, 2023.
  24. F. Fritzen, M. Fernández, and F. Larsson, “On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling,” Frontiers in Materials, vol. 6, p. 75, 2019.
  25. I. Rocha, P. Kerfriden, and F. van Der Meer, “On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning,” Journal of Computational Physics: X, vol. 9, p. 100083, 2021.
  26. M. Brand, “Fast low-rank modifications of the thin singular value decomposition,” Linear algebra and its applications, vol. 415, no. 1, pp. 20–30, 2006.
  27. D. Matsumoto and T. Indinger, “On-the-fly algorithm for dynamic mode decomposition using incremental singular value decomposition and total least squares,” arXiv preprint arXiv:1703.11004, 2017.
  28. H. Zhang, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, “Online dynamic mode decomposition for time-varying systems,” SIAM Journal on Applied Dynamical Systems, vol. 18, no. 3, pp. 1586–1609, 2019.
  29. “MFEM: Modular finite element methods [Software].” mfem.org.
  30. A. Tomboulides, J. Lee, and S. Orszag, “Numerical simulation of low mach number reactive flows,” Journal of Scientific Computing, vol. 12, pp. 139–167, 1997.
  31. M. Franco, J.-S. Camier, J. Andrej, and W. Pazner, “High-order matrix-free incompressible flow solvers with gpu acceleration and low-order refined preconditioners,” Computers & Fluids, vol. 203, p. 104541, 2020.
  32. C. H. Williamson, “Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low reynolds numbers,” Journal of Fluid Mechanics, vol. 206, pp. 579–627, 1989.

Summary

We haven't generated a summary for this paper yet.