Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Class Distribution Shifts in Zero-Shot Learning: Learning Robust Representations (2311.18575v4)

Published 30 Nov 2023 in cs.LG

Abstract: Zero-shot learning methods typically assume that the new, unseen classes encountered during deployment come from the same distribution as the the classes in the training set. However, real-world scenarios often involve class distribution shifts (e.g., in age or gender for person identification), posing challenges for zero-shot classifiers that rely on learned representations from training classes. In this work, we propose and analyze a model that assumes that the attribute responsible for the shift is unknown in advance. We show that in this setting, standard training may lead to non-robust representations. To mitigate this, we develop an algorithm for learning robust representations in which (a) synthetic data environments are constructed via hierarchical sampling, and (b) environment balancing penalization, inspired by out-of-distribution problems, is applied. We show that our algorithm improves generalization to diverse class distributions in both simulations and experiments on real-world datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yuli Slavutsky (5 papers)
  2. Yuval Benjamini (11 papers)

Summary

We haven't generated a summary for this paper yet.