Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STF: Spatial Temporal Fusion for Trajectory Prediction (2311.18149v1)

Published 29 Nov 2023 in cs.CV

Abstract: Trajectory prediction is a challenging task that aims to predict the future trajectory of vehicles or pedestrians over a short time horizon based on their historical positions. The main reason is that the trajectory is a kind of complex data, including spatial and temporal information, which is crucial for accurate prediction. Intuitively, the more information the model can capture, the more precise the future trajectory can be predicted. However, previous works based on deep learning methods processed spatial and temporal information separately, leading to inadequate spatial information capture, which means they failed to capture the complete spatial information. Therefore, it is of significance to capture information more fully and effectively on vehicle interactions. In this study, we introduced an integrated 3D graph that incorporates both spatial and temporal edges. Based on this, we proposed the integrated 3D graph, which considers the cross-time interaction information. In specific, we design a Spatial-Temporal Fusion (STF) model including Multi-layer perceptions (MLP) and Graph Attention (GAT) to capture the spatial and temporal information historical trajectories simultaneously on the 3D graph. Our experiment on the ApolloScape Trajectory Datasets shows that the proposed STF outperforms several baseline methods, especially on the long-time-horizon trajectory prediction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. W. Wang, L. Wang, C. Zhang, C. Liu, L. Sun et al., “Social interactions for autonomous driving: A review and perspectives,” Foundations and Trends® in Robotics, vol. 10, no. 3-4, pp. 198–376, 2022.
  2. A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep learning,” arXiv preprint arXiv:2106.11342, 2021.
  3. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially acceptable trajectories with generative adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2255–2264.
  4. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social LSTM: Human Trajectory Prediction in Crowded Spaces,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).   Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 961–971.
  5. A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 14 424–14 432.
  6. C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph transformer networks for pedestrian trajectory prediction,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16.   Springer, 2020, pp. 507–523.
  7. M. Mendieta and H. Tabkhi, “Carpe posterum: A convolutional approach for real-time pedestrian path prediction.” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, p. 2346–2354, Sep 2022. [Online]. Available: http://dx.doi.org/10.1609/aaai.v35i3.16335
  8. N. Deo and M. M. Trivedi, “Convolutional Social Pooling for Vehicle Trajectory Prediction,” May 2018.
  9. X. Li, X. Ying, and M. C. Chuah, “Grip++: Enhanced graph-based interaction-aware trajectory prediction for autonomous driving,” arXiv preprint arXiv:1907.07792, 2019.
  10. Y. Zhu, D. Qian, D. Ren, and H. Xia, “Starnet: Pedestrian trajectory prediction using deep neural network in star topology,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 8075–8080.
  11. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  12. Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha, “Trafficpredict: Trajectory prediction for heterogeneous traffic-agents,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 6120–6127.
  13. Z. Sheng, Y. Xu, S. Xue, and D. Li, “Graph-based spatial-temporal convolutional network for vehicle trajectory prediction in autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, 2022.
  14. X. Mo, Y. Xing, and C. Lv, “Recog: A deep learning framework with heterogeneous graph for interaction-aware trajectory prediction,” arXiv preprint arXiv:2012.05032, 2020.
  15. J. Sun, Q. Jiang, and C. Lu, “Recursive social behavior graph for trajectory prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 660–669.
  16. L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, and G. Hua, “Sgcn: Sparse graph convolution network for pedestrian trajectory prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 8994–9003.
  17. V. Kosaraju, A. Sadeghian, R. Martín-Martín, I. Reid, H. Rezatofighi, and S. Savarese, “Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention networks,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  18. M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun, “Learning lane graph representations for motion forecasting,” in European Conference on Computer Vision.   Springer, 2020, pp. 541–556.
  19. J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid, “Vectornet: Encoding hd maps and agent dynamics from vectorized representation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11 525–11 533.
  20. Z. Zhou, L. Ye, J. Wang, K. Wu, and K. Lu, “Hivt: Hierarchical vector transformer for multi-agent motion prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 8823–8833.
  21. I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” Advances in neural information processing systems, vol. 27, 2014.
  22. H. Song, W. Ding, Y. Chen, S. Shen, M. Y. Wang, and Q. Chen, “Pip: Planning-informed trajectory prediction for autonomous driving,” in European Conference on Computer Vision.   Springer, 2020, pp. 598–614.
  23. X. Li, X. Ying, and M. C. Chuah, “Grip: Graph-based interaction-aware trajectory prediction,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC).   IEEE, 2019, pp. 3960–3966.
  24. W. Chen, F. Wang, and H. Sun, “S2tnet: Spatio-temporal transformer networks for trajectory prediction in autonomous driving,” in Asian Conference on Machine Learning.   PMLR, 2021, pp. 454–469.
Citations (3)

Summary

We haven't generated a summary for this paper yet.