Generic proving of replica symmetry breaking (2311.18106v1)
Abstract: We study the replica symmetry breaking (rsb) concepts on a generic level through the prism of recently introduced interpolating/comparison mechanisms for bilinearly indexed (bli) random processes. In particular, \cite{Stojnicnflgscompyx23} introduced a \emph{fully lifted} (fl) interpolating mechanism and \cite{Stojnicsflgscompyx23} developed its a \emph{stationarized fully lifted} (sfl) variant. Here, we present a sfl \emph{matching} mechanism that shows that the results obtained in \cite{Stojnicnflgscompyx23,Stojnicsflgscompyx23} completely correspond to the ones obtained by a statistical physics replica tool with the replica symmetry breaking (rsb) form suggested by Parisi in \cite{Par79,Parisi80,Par80}. The results are very generic as they allow to handle pretty much all bilinear models at once. Moreover, given that the results of \cite{Stojnicnflgscompyx23,Stojnicsflgscompyx23} are extendable to many other forms, the concepts presented here automatically extend to any such forms as well.
- D. Achlioptas and Y. Peres. The threshold for random k-SAT is 2klnk−O(k)2𝑘𝑙𝑛𝑘𝑂𝑘2klnk-{O}(k)2 italic_k italic_l italic_n italic_k - italic_O ( italic_k ). Journal of the AMS, 17:947–973, 2004.
- R. J. Adler. An introduction to Continuity, Extrema, and Related Topic for General Gaussian Processes. Institute of Mathematical Statistics, 1990.
- Analogue neural networks on correlated random graphs. J. Phys. A: Math. Theor., 45:365001, 2012.
- Parallel processing in immune networks. Phys. Rev. E, 2012.
- Multitasking associative networks. Phys. Rev. Lett, 2012.
- A. E. Alaoui and M. Sellke. Algorithmic pure states for the negative spherical perceptron. 2020. available online at http://arxiv.org/abs/2010.15811.
- D. J. Aldous. Asymptotics in the random assignment problem. Probab Theory Related Fields, 93:507–534, 1992.
- D. J. Aldous. The zeta(2) limit in the random assignment problem. Random Structures Algorithms, 18:381–418, 2001.
- Exact expectations and distributions for the random assignment problem. Combinat. Probab. Comput., 11(3):217–248, 2002.
- Phys. Rev. A, 32:1007, 1985.
- P. Baldi and S. Venkatesh. Number od stable points for spin-glasses and neural networks of higher orders. Phys. Rev. Letters, 58(9):913–916, Mar. 1987.
- The replica symmetric approximation of the analogical neural network. J. Stat. Physics, July 2010.
- Equlibrium statistical mechanics of bipartite spin systems. Journal of Physics A: Mathematical and Theoeretical, 44(245002), 2011.
- How glassy are neural networks. J. Stat. Mechanics: Thery and Experiment, July 2012.
- M. Bayati and A. Montanari. The lasso risk of gaussian matrices. 2010. available online at http://arxiv.org/abs/1008.2581.
- M. Bayati and A. Montanari. The dynamics of message passing on dense graphs, with applications to compressed sensing. IEEE Transactions on Information Theory, 57(2), 2011.
- Asymmetric Little spin glas model. Physical Review B, 46(9), September 1992.
- Eigenstates and limit cycles in the SK model. Journal of Physics A: Mathematical and General, 21:4201, 1988.
- S. H. Cameron. Tech-report 60-600. Proceedings of the bionics symposium, pages 197–212, 1960. Wright air development division, Dayton, Ohio.
- A. Coja-Oghlan. The asymptotic k-SAT threshold. Proceedings of the forty-fifth annual ACM symposium on theory of computing (STOC), pages 804–813, 2014.
- D. Coppersmith and G. Sorkin. Constructive bounds and exact expectations for the random assignment problem. Random Structures Algorithms, 15:113–144, 1999.
- D. Coppersmith and G. Sorkin. On the expected incremental cost of a minimum assignment. Contemporary combinatories, Bolyai Society Mathematical Studies, 10(8), 2002. B. Bollobas (Editor), Springer, New York.
- T. Cover. Geomretrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers, (EC-14):326–334, 1965.
- Satisfiability Threshold for Random Regular nae-sat. Communications in Mathematical Physics, 341(2):435–489, 2015.
- Satisfiability threshold for random regular NAE-SAT. Proceedings of the forty-sixth annual ACM symposium on theory of computing (STOC), pages 814–822, 2015.
- D. Donoho. High-dimensional centrally symmetric polytopes with neighborlines proportional to dimension. Disc. Comput. Geometry, 35(4):617–652, 2006.
- D. Donoho and J. Tanner. Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Preprint, 2009. available at arXiv:0906.2530.
- X. Fernique. Des resultats nouveaux sur les processus Gaussiens. C.R. Acad. Sci. Paris Ser A-B, 278:A363–A365, 1974.
- X. Fernique. Regularite des trajectoires des fonctions aleatoires Gaussiens. Springer Lecture notes, 480:1–96, 1975.
- Jamming in multilayer supervised learning models. Phys. Rev. Lett., 123(16):160602, 2019.
- S. Franz and G. Parisi. The simplest model of jamming. Journal of Physics A: Mathematical and Theoretical, 49(14):145001, 2016.
- Universality of the SAT-UNSAT (jamming) threshold in non-convex continuous constraint satisfaction problems. SciPost Physics, 2:019, 2017.
- Critical jammed phase of the linear perceptron. Phys. Rev. Lett., 123(11):115702, 2019.
- Surfing on minima of isostatic landscapes: avalanches and unjamming transition. SciPost Physics, 9:12, 2020.
- A. Frieze and N. Wormald. Random k-Sat: a tight threshold for moderately growing k. Combinatorica, 28:297–305, 2005.
- E. Gardner. The space of interactions in neural networks models. J. Phys. A: Math. Gen., 21:257–270, 1988.
- E. Gardner and B. Derrida. Optimal storage properties of neural networks models. J. Phys. A: Math. Gen., 21:271–284, 1988.
- Y. Gordon. Some inequalities for Gaussian processes and applications. Israel Journal of Mathematics, 50(4):265–289, 1985.
- F. Guerra. Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Physics, 233:1–12, 2003.
- H. Gutfreund and Y. Stein. Capacity of neural networks with discrete synaptic couplings. J. Physics A: Math. Gen, 23:2613, 1990.
- D. O. Hebb. Organization of behavior. New York: Wiley, 1949.
- J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Science, 79:2554, 1982.
- R. D. Joseph. The number of orthants in n𝑛nitalic_n-space instersected by an s𝑠sitalic_s-dimensional subspace. Tech. memo 8, project PARA, 1960. Cornel aeronautical lab., Buffalo, N.Y.
- J. P. Kahane. Une inegualite du type de Slepian et Gordon sur les processus Gaussiens. Israel Journal of Mathematics, 55(1):109–110, 1986.
- Covering cubes by random half cubes with applications to biniary neural networks. Journal of Computer and System Sciences, 56:223–252, 1998.
- W. Krauth and M. Mezard. Storage capacity of memory networks with binary couplings. J. Phys. France, 50:3057–3066, 1989.
- M. Ledoux and M. Talagrand. Probability in Banach spaces: Isopermetry and Processes. Springer (New York), 1991.
- M. A. Lifshits. Gaussian random functions. Kluwer, Boston, 1995.
- S. Linusson and J. Wastlund. A proof of Parisi’s conjecture on the random assignment problem. Probabil Theory Related Fields, 128(3):419–440, 2004.
- W. A. Little. The existence of persistent states in the brain. Math. Biosci., 19(1-2):101–120, 1974.
- Threshold values of random K-SAT from the cavity method. Random Struct. Alg., 28:340–373, 2006.
- M. Mezard and G. Parisi. On the solution of the random link matching problem. J Physique, 48:1451–1459, 1987.
- Analytic and algorithmic solution of random satisfiability problems. Science, 297:812–815, 2002.
- M. Molloy. The freezing threshold for k-colourings of a random graph. Proceedings of the forty-third annual ACM symposium on theory of computing (STOC), pages 921–930, 2012.
- Proofs of the Parisi and Coppersmith-Sorkin random assignment conjectures. Random Structures and Algorithms, 27(4):413–444, 2005.
- R. O.Winder. Threshold logic. Ph. D. dissertation, Princetoin University, 1962.
- D. Panchenko. A connection between the Ghirlanda-Guerra identities and ultrametricity. The Annals of Probability, 38(1):327–347, 2010.
- D. Panchenko. The Ghirlanda-Guerra identities for mixed p-spin model. Comptes Rendus Mathematique, 348(3-4):189–192, 2010.
- D. Panchenko. The Parisi ultrametricity conjecture. Ann. Math., 77(1):383–393, 2013.
- D. Panchenko. The Sherrington-Kirkpatrick model. Springer Science & Business Media, 2013.
- D. Panchenko. On the replica symmetric solution of the l-sat model. Electronic Journal of Probability, 19, 2014.
- G. Parisi. Infnite number of order parameters for spin-glasses. Phys. Rev. Lett., 43:1754–1756, 1979.
- G. Parisi. Breaking the symmetry in SK model. J. Physics, A13:1101, 1980.
- G. Parisi. A sequence of approximated solutions to the SK model for spin glasses. Journal of Physics A: Mathematical and General, 13(4):L115, 1980.
- G. Parisi. Order parameter for spin glasses. Phys. Rev. Lett., 50:1946, 1983.
- L. Pastur and A. Figotin. On the theory of disordered spin systems. Theory Math. Phys., 35(403-414), 1978.
- The replica-symmetric solution without the replica trick for the Hopfield model. Journal of Statistical Physics, 74(5/6), 1994.
- L. Schlafli. Gesammelte Mathematische AbhandLungen I. Basel, Switzerland: Verlag Birkhauser, 1950.
- M. Shcherbina and B. Tirozzi. The free energy of a class of Hopfield models. Journal of Statistical Physics, 72(1/2), 1993.
- M. Shcherbina and B. Tirozzi. On the volume of the intrersection of a sphere with random half spaces. C. R. Acad. Sci. Paris. Ser I, (334):803–806, 2002.
- M. Shcherbina and B. Tirozzi. Rigorous solution of the Gardner problem. Comm. on Math. Physics, (234):383–422, 2003.
- D. Sherrington and S. Kirkpatrick. Solvable model of a spin glass. Phys. Rev. Letters, 35:1792–1796, 1972.
- D. Slepian. The one sided barier problem for Gaussian noise. Bell System Tech. Journal, 41:463–501, 1962.
- M. Stojnic. A framework for perfromance characterization of LASSO algortihms. available online at http://arxiv.org/abs/1303.7291.
- M. Stojnic. Upper-bounding ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-optimization weak thresholds. available online at http://arxiv.org/abs/1303.7289.
- M. Stojnic. Various thresholds for ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-optimization in compressed sensing. available online at http://arxiv.org/abs/0907.3666.
- M. Stojnic. Block-length dependent thresholds for ℓ2/ℓ1subscriptℓ2subscriptℓ1\ell_{2}/\ell_{1}roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT / roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-optimization in block-sparse compressed sensing. ICASSP, IEEE International Conference on Acoustics, Signal and Speech Processing, pages 3918–3921, 14-19 March 2010. Dallas, TX.
- M. Stojnic. ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT optimization and its various thresholds in compressed sensing. ICASSP, IEEE International Conference on Acoustics, Signal and Speech Processing, pages 3910–3913, 14-19 March 2010. Dallas, TX.
- M. Stojnic. Recovery thresholds for ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT optimization in binary compressed sensing. ISIT, IEEE International Symposium on Information Theory, pages 1593 – 1597, 13-18 June 2010. Austin, TX.
- M. Stojnic. Towards improving ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT optimization in compressed sensing. ICASSP, IEEE International Conference on Acoustics, Signal and Speech Processing, pages 3938–3941, 14-19 March 2010. Dallas, TX.
- M. Stojnic. Another look at the Gardner problem. 2013. available online at http://arxiv.org/abs/1306.3979.
- M. Stojnic. Asymmetric Little model and its ground state energies. 2013. available online at http://arxiv.org/abs/1306.3978.
- M. Stojnic. Bounds on restricted isometry constants of random matrices. 2013. available online at http://arxiv.org/abs/1306.3779.
- M. Stojnic. Discrete perceptrons. 2013. available online at http://arxiv.org/abs/1303.4375.
- M. Stojnic. Lifting ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-optimization strong and sectional thresholds. 2013. available online at http://arxiv.org/abs/1306.3770.
- M. Stojnic. Lifting/lowering Hopfield models ground state energies. 2013. available online at http://arxiv.org/abs/1306.3975.
- M. Stojnic. Negative spherical perceptron. 2013. available online at http://arxiv.org/abs/1306.3980.
- M. Stojnic. Regularly random duality. 2013. available online at http://arxiv.org/abs/1303.7295.
- M. Stojnic. Spherical perceptron as a storage memory with limited errors. 2013. available online at http://arxiv.org/abs/1306.3809.
- M. Stojnic. Fully bilinear generic and lifted random processes comparisons. 2016. available online at http://arxiv.org/abs/1612.08516.
- M. Stojnic. Generic and lifted probabilistic comparisons – max replaces minmax. 2016. available online at http://arxiv.org/abs/1612.08506.
- M. Stojnic. Bilinearly indexed random processes – stationarization of fully lifted interpolation. 2023. available online at arxiv.
- M. Stojnic. Fully lifted interpolating comparisons of bilinearly indexed random processes. 2023. available online at arxiv.
- V. N. Sudakov. Gaussian random processes and measures of solid angles in Hilbert space. Soviet Math. Dokl., 12(1):412–415, 1971.
- M. Talagrand. Rigorous results for the Hopfield model with many patterns. Prob. theory and related fields, 110:177–276, 1998.
- M. Talagrand. An assignment problem at high temperature. Ann. Probab., 31(2):818–848, 2003.
- M. Talagrand. The Generic Chaining. Springer-Verlag, 2005.
- M. Talagrand. The Parisi formula. Annals of mathematics, 163(2):221–263, 2006.
- M. Talagrand. Mean field models and spin glasse: Volume II. A series of modern surveys in mathematics 55, Springer-Verlag, Berlin Heidelberg, 2011.
- M. Talagrand. Mean field models and spin glasses: Volume I. A series of modern surveys in mathematics 54, Springer-Verlag, Berlin Heidelberg, 2011.
- S. Venkatesh. Epsilon capacity of neural networks. Proc. Conf. on Neural Networks for Computing, Snowbird, UT, 1986.
- J. Wastlund. A proof of a conjecture of Buck, Chan, and Robbins on the expected value of the minimum assignment. Random Structures Algorithms, 26(1-2):237–251, 2004.
- J. Wastlund. An easy proof of the ζ(2)𝜁2\zeta(2)italic_ζ ( 2 ) limit in the random assignment problem. Electronic Communications in Probability, 14:1475, 2009.
- J. Wastlund. Replica symmetry of the minimum matching. Annals of Mathematics, 175(3):1061–1091, 2012.
- J. G. Wendel. A problem in geometric probability. Mathematica Scandinavica, 1:109–111, 1962.
- J. G. Wendel. A problem in geometric probablity. Mathematics Scandinavia, 11:109–111, 1962.
- R. O. Winder. Single stage threshold logic. Switching circuit theory and logical design, pages 321–332, Sep. 1961. AIEE Special publications S-134.