Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Game Projection and Robustness for Game-Theoretic Autonomous Driving (2311.18074v1)

Published 29 Nov 2023 in eess.SY and cs.SY

Abstract: Game-theoretic approaches are envisioned to bring human-like reasoning skills and decision-making processes for autonomous vehicles (AVs). However, challenges including game complexity and incomplete information still remain to be addressed before they can be sufficiently practical for real-world use. Game complexity refers to the difficulties of solving a multi-player game, which include solution existence, algorithm convergence, and scalability. To address these difficulties, a potential game based framework was developed in our recent work. However, conditions on cost function design need to be enforced to make the game a potential game. This paper relaxes the conditions and makes the potential game approach applicable to more general scenarios, even including the ones that cannot be molded as a potential game. Incomplete information refers to the ego vehicle's lack of knowledge of other traffic agents' cost functions. Cost function deviations between the ego vehicle estimated/learned other agents' cost functions and their actual ones are often inevitable. This motivates us to study the robustness of a game-theoretic solution. This paper defines the robustness margin of a game solution as the maximum magnitude of cost function deviations that can be accommodated in a game without changing the optimality of the game solution. With this definition, closed-form robustness margins are derived. Numerical studies using highway lane-changing scenarios are reported.

Citations (1)

Summary

We haven't generated a summary for this paper yet.