Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Page curve entanglement dynamics in an analytically solvable model (2311.18045v3)

Published 29 Nov 2023 in quant-ph, cond-mat.stat-mech, and hep-th

Abstract: The entanglement entropy of black holes is expected to follow the Page curve. After an initial linear increase with time the entanglement entropy should reach a maximum at the Page time and then decrease. This paper introduces an exactly solvable model of free fermions that explicitly shows such a Page curve: The entanglement entropy vanishes asymptotically for late times instead of saturating at a volume law. The bending down of the Page curve is accompanied by a breakdown of the semiclassical connection between particle current and entanglement generation, a quantum phase transition in the entanglement Hamiltonian and non-analytic behavior of the $q\rightarrow\infty$ Renyi entropy. These observations are expected to hold for a larger class of systems beyond the exactly solvable model analyzed here.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. J. Eisert, M. Cramer,  and M. B. Plenio, “Colloquium: Area laws for the entanglement entropy,” Rev. Mod. Phys. 82, 277–306 (2010).
  2. Ulrich Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Annals of Physics 326, 96–192 (2011), january 2011 Special Issue.
  3. Shinsei Ryu and Tadashi Takayanagi, “Holographic derivation of entanglement entropy from the anti–de sitter space/conformal field theory correspondence,” Phys. Rev. Lett. 96, 181602 (2006).
  4. Pasquale Calabrese and John Cardy, “Evolution of entanglement entropy in one-dimensional systems,” Journal of Statistical Mechanics: Theory and Experiment 2005, P04010 (2005).
  5. Wen Wei Ho and Dmitry A. Abanin, “Entanglement dynamics in quantum many-body systems,” Phys. Rev. B 95, 094302 (2017).
  6. Hyungwon Kim and David A. Huse, “Ballistic spreading of entanglement in a diffusive nonintegrable system,” Phys. Rev. Lett. 111, 127205 (2013).
  7. S. W. Hawking, “Particle creation by black holes,” Communications in Mathematical Physics 43, 199 (1975).
  8. Don N. Page, “Information in black hole radiation,” Phys. Rev. Lett. 71, 3743–3746 (1993).
  9. Don N. Page, “Time dependence of hawking radiation entropy,” Journal of Cosmology and Astroparticle Physics 2013, 028 (2013).
  10. Samir D. Mathur, “The information paradox: a pedagogical introduction,” Classical and Quantum Gravity 26, 224001 (2009).
  11. Ahmed Almheiri, Thomas Hartman, Juan Maldacena, Edgar Shaghoulian,  and Amirhossein Tajdini, “The entropy of hawking radiation,” Rev. Mod. Phys. 93, 035002 (2021).
  12. S. W. Hawking, “Breakdown of predictability in gravitational collapse,” Phys. Rev. D 14, 2460–2473 (1976).
  13. K. Papadodimas and S. Raju, ‘‘An infalling observer in ads/cft,” J. High Energ. Phys. 2013, 212 (2013).
  14. Oleg Lunin and Samir D. Mathur, “Ads/cft duality and the black hole information paradox,” Nuclear Physics B 623, 342–394 (2002).
  15. A. Almheiri, D. Marolf, J. Polchinski,  and J. Scully, “Black holes: complementarity or firewalls?” J. High Energ. Phys. 2013, 62 (2013).
  16. A. Almheiri, N. Engelhardt, D. Marolf,  and H. Maxfield, “The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole,” J. High Energ. Phys. 2019, 63 (2019).
  17. G. Penington, S.H. Shenker, D. Stanford,  and Z. Yang, “Replica wormholes and the black hole interior,” J. High Energ. Phys. 2022, 205 (2022).
  18. C. Akers, N. Engelhardt, D. Harlow, G. Penington,  and S. Vardhan, “The black hole interior from non-isometric codes and complexity,” Preprint arXiv:2207.06536 .
  19. Hong Liu and Shreya Vardhan, “A dynamical mechanism for the Page curve from quantum chaos,” Journal of High Energy Physics 2021, 88 (2021).
  20. Pak Hang Chris Lau, Toshifumi Noumi, Yuhei Takii,  and Kotaro Tamaoka, “Page curve and symmetries,” Journal of High Energy Physics 2022, 15 (2022).
  21. Yiming Chen, Xiao-Liang Qi,  and Pengfei Zhang, “Replica wormhole and information retrieval in the SYK model coupled to Majorana chains,” Journal of High Energy Physics 2020, 121 (2020a).
  22. H. Z. Chen, R. C. Myers, D. Neuenfeld, I. A. Reyesc, ,  and J. Sandora, “Quantum extremal islands made easy. part ii. black holes on the brane,” J. High Energ. Phys. , 25 (2020b).
  23. H. Geng, S. Lüst, R. K. Mishra,  and D. Wakeham, “Holographic bcfts and communicating black holes,” J. High Energ. Phys. 2021, 3 (2021).
  24. H. Geng, L. Randall,  and E. Swanson, “Bcft in a black hole background: an analytical holographic model,” J. High Energ. Phys. , 56 (2022).
  25. Ingo Peschel and Viktor Eisler, “Reduced density matrices and entanglement entropy in free lattice models,” Journal of Physics A: Mathematical and Theoretical 42, 504003 (2009).
  26. V Eisler, D Karevski, T Platini,  and I Peschel, “Entanglement evolution after connecting finite to infinite quantum chains,” Journal of Statistical Mechanics: Theory and Experiment 2008, P01023 (2008).
  27. Viktor Eisler, Ferenc Iglói,  and Ingo Peschel, “Entanglement in spin chains with gradients,” Journal of Statistical Mechanics: Theory and Experiment 2009, P02011 (2009).
  28. Viktor Eisler and Ingo Peschel, “On entanglement evolution across defects in critical chains,” Europhysics Letters 99, 20001 (2012).
  29. Luca Capizzi and Viktor Eisler, “Entanglement evolution after a global quench across a conformal defect,” SciPost Phys. 14, 070 (2023).
  30. F. Guinea, V Hakim,  and A Muramatsu, “Bosonization of a two-level system with dissipation,” Physical Review Letters 32, 4410 – 4418 (1985).
  31. David C. Langreth and P. Nordlander, “Derivation of a master equation for charge-transfer processes in atom-surface collisions,” Physical Review B 43, 2541–2557 (1991).
  32. Jacopo Surace, Luca Tagliacozzo,  and Erik Tonni, “Operator content of entanglement spectra in the transverse field ising chain after global quenches,” Phys. Rev. B 101, 241107 (2020).
  33. Joseph Polchinski, “The black hole information problem,” in New Frontiers in Fields and Strings (World Scientific, 2016).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)