Page curve entanglement dynamics in an analytically solvable model (2311.18045v3)
Abstract: The entanglement entropy of black holes is expected to follow the Page curve. After an initial linear increase with time the entanglement entropy should reach a maximum at the Page time and then decrease. This paper introduces an exactly solvable model of free fermions that explicitly shows such a Page curve: The entanglement entropy vanishes asymptotically for late times instead of saturating at a volume law. The bending down of the Page curve is accompanied by a breakdown of the semiclassical connection between particle current and entanglement generation, a quantum phase transition in the entanglement Hamiltonian and non-analytic behavior of the $q\rightarrow\infty$ Renyi entropy. These observations are expected to hold for a larger class of systems beyond the exactly solvable model analyzed here.
- J. Eisert, M. Cramer, and M. B. Plenio, “Colloquium: Area laws for the entanglement entropy,” Rev. Mod. Phys. 82, 277–306 (2010).
- Ulrich Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Annals of Physics 326, 96–192 (2011), january 2011 Special Issue.
- Shinsei Ryu and Tadashi Takayanagi, “Holographic derivation of entanglement entropy from the anti–de sitter space/conformal field theory correspondence,” Phys. Rev. Lett. 96, 181602 (2006).
- Pasquale Calabrese and John Cardy, “Evolution of entanglement entropy in one-dimensional systems,” Journal of Statistical Mechanics: Theory and Experiment 2005, P04010 (2005).
- Wen Wei Ho and Dmitry A. Abanin, “Entanglement dynamics in quantum many-body systems,” Phys. Rev. B 95, 094302 (2017).
- Hyungwon Kim and David A. Huse, “Ballistic spreading of entanglement in a diffusive nonintegrable system,” Phys. Rev. Lett. 111, 127205 (2013).
- S. W. Hawking, “Particle creation by black holes,” Communications in Mathematical Physics 43, 199 (1975).
- Don N. Page, “Information in black hole radiation,” Phys. Rev. Lett. 71, 3743–3746 (1993).
- Don N. Page, “Time dependence of hawking radiation entropy,” Journal of Cosmology and Astroparticle Physics 2013, 028 (2013).
- Samir D. Mathur, “The information paradox: a pedagogical introduction,” Classical and Quantum Gravity 26, 224001 (2009).
- Ahmed Almheiri, Thomas Hartman, Juan Maldacena, Edgar Shaghoulian, and Amirhossein Tajdini, “The entropy of hawking radiation,” Rev. Mod. Phys. 93, 035002 (2021).
- S. W. Hawking, “Breakdown of predictability in gravitational collapse,” Phys. Rev. D 14, 2460–2473 (1976).
- K. Papadodimas and S. Raju, ‘‘An infalling observer in ads/cft,” J. High Energ. Phys. 2013, 212 (2013).
- Oleg Lunin and Samir D. Mathur, “Ads/cft duality and the black hole information paradox,” Nuclear Physics B 623, 342–394 (2002).
- A. Almheiri, D. Marolf, J. Polchinski, and J. Scully, “Black holes: complementarity or firewalls?” J. High Energ. Phys. 2013, 62 (2013).
- A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield, “The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole,” J. High Energ. Phys. 2019, 63 (2019).
- G. Penington, S.H. Shenker, D. Stanford, and Z. Yang, “Replica wormholes and the black hole interior,” J. High Energ. Phys. 2022, 205 (2022).
- C. Akers, N. Engelhardt, D. Harlow, G. Penington, and S. Vardhan, “The black hole interior from non-isometric codes and complexity,” Preprint arXiv:2207.06536 .
- Hong Liu and Shreya Vardhan, “A dynamical mechanism for the Page curve from quantum chaos,” Journal of High Energy Physics 2021, 88 (2021).
- Pak Hang Chris Lau, Toshifumi Noumi, Yuhei Takii, and Kotaro Tamaoka, “Page curve and symmetries,” Journal of High Energy Physics 2022, 15 (2022).
- Yiming Chen, Xiao-Liang Qi, and Pengfei Zhang, “Replica wormhole and information retrieval in the SYK model coupled to Majorana chains,” Journal of High Energy Physics 2020, 121 (2020a).
- H. Z. Chen, R. C. Myers, D. Neuenfeld, I. A. Reyesc, , and J. Sandora, “Quantum extremal islands made easy. part ii. black holes on the brane,” J. High Energ. Phys. , 25 (2020b).
- H. Geng, S. Lüst, R. K. Mishra, and D. Wakeham, “Holographic bcfts and communicating black holes,” J. High Energ. Phys. 2021, 3 (2021).
- H. Geng, L. Randall, and E. Swanson, “Bcft in a black hole background: an analytical holographic model,” J. High Energ. Phys. , 56 (2022).
- Ingo Peschel and Viktor Eisler, “Reduced density matrices and entanglement entropy in free lattice models,” Journal of Physics A: Mathematical and Theoretical 42, 504003 (2009).
- V Eisler, D Karevski, T Platini, and I Peschel, “Entanglement evolution after connecting finite to infinite quantum chains,” Journal of Statistical Mechanics: Theory and Experiment 2008, P01023 (2008).
- Viktor Eisler, Ferenc Iglói, and Ingo Peschel, “Entanglement in spin chains with gradients,” Journal of Statistical Mechanics: Theory and Experiment 2009, P02011 (2009).
- Viktor Eisler and Ingo Peschel, “On entanglement evolution across defects in critical chains,” Europhysics Letters 99, 20001 (2012).
- Luca Capizzi and Viktor Eisler, “Entanglement evolution after a global quench across a conformal defect,” SciPost Phys. 14, 070 (2023).
- F. Guinea, V Hakim, and A Muramatsu, “Bosonization of a two-level system with dissipation,” Physical Review Letters 32, 4410 – 4418 (1985).
- David C. Langreth and P. Nordlander, “Derivation of a master equation for charge-transfer processes in atom-surface collisions,” Physical Review B 43, 2541–2557 (1991).
- Jacopo Surace, Luca Tagliacozzo, and Erik Tonni, “Operator content of entanglement spectra in the transverse field ising chain after global quenches,” Phys. Rev. B 101, 241107 (2020).
- Joseph Polchinski, “The black hole information problem,” in New Frontiers in Fields and Strings (World Scientific, 2016).