Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

mango: A Modular Python-Based Agent Simulation Framework (2311.17688v1)

Published 29 Nov 2023 in cs.MA

Abstract: Agent-based simulations, especially those including communication, are complex to model and execute. To help researchers deal with this complexity and to encourage modular and maintainable research software, the Python-based framework mango (modular python agent framework) has been developed. The framework enables users to quickly implement software agents with different communication protocols (e.g., TCP) and message codecs (e.g., JSON). Furthermore, mango provides various options for developing an integrated agent simulation. This includes a scheduler module, which can control the agents' tasks, a (distributed) clock mechanism for time synchronization, and a specific simulation component, which can be coupled with other (co-)simulation software. These features are complemented by modular implementation patterns and a well-evaluated performance with the ability to simulate across multiple processes to ensure scalability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. S. J. Russell and P. Norvig, Artificial intelligence a modern approach. London, 2010.
  2. J. Kazil, D. Masad, and A. Crooks, “Utilizing python for agent-based modeling: The mesa framework,” in Social, Cultural, and Behavioral Modeling (R. Thomson, H. Bisgin, C. Dancy, A. Hyder, and M. Hussain, eds.), (Cham), pp. 308–317, Springer International Publishing, 2020.
  3. G. Datseris, A. R. Vahdati, and T. C. DuBois, “Agents.jl: a performant and feature-full agent-based modeling software of minimal code complexity,” SIMULATION, Jan. 2022.
  4. S. Tisue and U. Wilensky, “Netlogo: A simple environment for modeling complexity,” in International conference on complex systems, vol. 21, pp. 16–21, Citeseer, 2004.
  5. B. Ludwig, bangxiangyong, A. Prasad, H. Lulic, M. Gruber, and gertjan123, “Met4FoF/agentMET4FOF: V0.13.2,” zenodo, 2022.
  6. S. Bickerle, C. Hempel, and K. Dinh, “Wallet framework for .net (1.6.4), former agent framework for .net [last access 13-11-2023],” 2023.
  7. F. Bellifemine, A. Poggi, and G. Rimassa, “Jade: A fipa2000 compliant agent development environment,” in Proceedings of the Fifth International Conference on Autonomous Agents, AGENTS ’01, (New York, NY, USA), p. 216–217, Association for Computing Machinery, 2001.
  8. P. D. O’Brien and R. C. Nicol, “Fipa—towards a standard for software agents,” BT Technology Journal, vol. 16, pp. 51–59, 1998.
  9. M. Lützenberger, T. Küster, T. Konnerth, A. Thiele, N. Masuch, A. Heßler, J. Keiser, M. Burkhardt, S. Kaiser, and S. Albayrak, “Jiac v: A mas framework for industrial applications,” in Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, pp. 1189–1190, 2013.
  10. R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu, R. Harrop, T. Risberg, A. Arendsen, D. Davison, D. Kopylenko, M. Pollack, et al., “The spring framework-reference documentation,” interface, vol. 21, p. 27, 2004.
  11. M. Winikoff, “Jack™ intelligent agents: an industrial strength platform,” Multi-agent programming: Languages, platforms and applications, pp. 175–193, 2005.
  12. J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. van der Torre, “The boid architecture: conflicts between beliefs, obligations, intentions and desires,” in Proceedings of the fifth international conference on Autonomous agents, pp. 9–16, 2001.
  13. L. Zhang, “agentframework (2.0.1) [last access 13-11-2023],” 2022.
  14. S. Palanca, Javi; Alemany, “Spade (3.3.2) [last access 13-11-2023],” 2023.
  15. A. Varga, “Omnet++,” in Modeling and tools for network simulation, pp. 35–59, Springer, 2010.
  16. C. Hinrichs and M. Sonnenschein, “A distributed combinatorial optimisation heuristic for the scheduling of energy resources represented by self-interested agents.,” IJBIC, vol. 10, no. 2, pp. 69–78, 2017.
  17. C. Steinbrink, M. Blank-Babazadeh, A. El-Ama, S. Holly, B. Lüers, M. Nebel-Wenner, R. P. Ramírez Acosta, T. Raub, J. S. Schwarz, S. Stark, A. Nieße, and S. Lehnhoff, “Cpes testing with mosaik: Co-simulation planning, execution and analysis,” Applied Sciences, vol. 9, no. 5, 2019.
  18. R. Schrage, P. H. Tiemann, and A. Nieße, “A multi-criteria metaheuristic algorithm for distributed optimization of electric energy storage,” ACM SIGENERGY Energy Informatics Review, vol. 2, no. 4, pp. 44–59, 2023.
  19. R. Schrage and A. Nieße, “Influence of adaptive coupling points on coalition formation in multi-energy systems,” Applied Network Science, vol. 8, no. 1, 2023.
  20. P. H. Tiemann, M. Nebel-Wenner, S. Holly, E. Frost, A. Jimenez Martinez, and A. Nieße, “Operational flexibility for multi-purpose usage of pooled battery storage systems,” Energy Informatics, vol. 5, no. 1, pp. 1–13, 2022.
  21. S. Stark, A. Volkova, S. Lehnhoff, and H. de Meer, “Why your power system restoration does not work and what the ICT system can do about it,” in Proceedings of the twelfth ACM international conference on future energy systems, pp. 269–273, 2021.
  22. S. Holly and A. Nieße, “Dynamic communication topologies for distributed heuristics in energy system optimization algorithms,” in 2021 16th Conference on Computer Science and Intelligence Systems (FedCSIS), pp. 191–200, IEEE, 2021.
Citations (3)

Summary

We haven't generated a summary for this paper yet.