Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bias Resilient Multi-Step Off-Policy Goal-Conditioned Reinforcement Learning (2311.17565v1)

Published 29 Nov 2023 in cs.LG and cs.AI

Abstract: In goal-conditioned reinforcement learning (GCRL), sparse rewards present significant challenges, often obstructing efficient learning. Although multi-step GCRL can boost this efficiency, it can also lead to off-policy biases in target values. This paper dives deep into these biases, categorizing them into two distinct categories: "shooting" and "shifting". Recognizing that certain behavior policies can hasten policy refinement, we present solutions designed to capitalize on the positive aspects of these biases while minimizing their drawbacks, enabling the use of larger step sizes to speed up GCRL. An empirical study demonstrates that our approach ensures a resilient and robust improvement, even in ten-step learning scenarios, leading to superior learning efficiency and performance that generally surpass the baseline and several state-of-the-art multi-step GCRL benchmarks.

Summary

We haven't generated a summary for this paper yet.