Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete-to-continuum limits of optimal transport with linear growth on periodic graphs (2311.17284v1)

Published 28 Nov 2023 in math.OC, cs.NA, math.AP, and math.NA

Abstract: We prove discrete-to-continuum convergence for dynamical optimal transport on $\mathbb{Z}d$-periodic graphs with energy density having linear growth at infinity. This result provides an answer to a problem left open by Gladbach, Kopfer, Maas, and Portinale (Calc Var Partial Differential Equations 62(5), 2023), where the convergence behaviour of discrete boundary-value dynamical transport problems is proved under the stronger assumption of superlinear growth. Our result extends the known literature to some important classes of examples, such as scaling limits of 1-Wasserstein transport problems. Similarly to what happens in the quadratic case, the geometry of the graph plays a crucial role in the structure of the limit cost function, as we discuss in the final part of this work, which includes some visual representations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
  2. M. Amar and E. Vitali. Homogenization of periodic Finsler metrics. J. Convex Anal., 5(1), 171–186, 1998.
  3. A rewriting system for convex optimization problems. Journal of Control and Decision, 5(1), 42–60, 2018.
  4. Topological equivalence of some variational problems involving distances. Discrete and Continuous Dynamical Systems, 7(2), 247–258, 2001.
  5. J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math., 84(3), 375–393, 2000.
  6. Fokker-Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal., 203(3), 969–1008, 2012.
  7. S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research, 17(83), 1–5, 2016.
  8. K. Disser and M. Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Netw. Heterog. Media, 10(2), 233–253, 2015.
  9. Ricci curvature bounds for weakly interacting Markov chains. Electron. J. Probab., 22, Paper No. 40, 23, 2017.
  10. Graph-to-local limit for the nonlocal interaction equation. arXiv preprint arXiv:2306.03475, 2023.
  11. Discrete Ricci curvature bounds for Bernoulli-Laplace and random transposition models. Ann. Fac. Sci. Toulouse Math. (6), 24(4), 781–800, 2015.
  12. Nonlocal-interaction equation on graphs: gradient flow structure and continuum limit. Arch. Ration. Mech. Anal., 240(2), 699–760, 2021.
  13. On a class of nonlocal continuity equations on graphs. European Journal of Applied Mathematics, pages 1–18, 2023.
  14. M. Erbar and M. Fathi. Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature. J. Funct. Anal., 274(11), 3056–3089, 2018.
  15. M. Erbar and J. Maas. Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal., 206(3), 997–1038, 2012.
  16. M. Erbar and J. Maas. Gradient flow structures for discrete porous medium equations. Discrete Contin. Dyn. Syst., 34(4), 1355–1374, 2014.
  17. A. Esposito and L. Mikolás. On evolution pdes on co-evolving graphs. arXiv preprint arXiv:2310.10350, 2023.
  18. M. Fathi and J. Maas. Entropic Ricci curvature bounds for discrete interacting systems. Ann. Appl. Probab., 26(3), 1774–1806, 2016.
  19. Evolutionary ΓΓ\Gammaroman_Γ-convergence of entropic gradient flow structures for Fokker-Planck equations in multiple dimensions. SIAM J. Math. Anal., 54(4), 4297–4333, 2022.
  20. N. García Trillos. Gromov-Hausdorff limit of Wasserstein spaces on point clouds. Calc. Var. Partial Differential Equations, 59(2), Paper No. 73, 43, 2020.
  21. N. Gigli and J. Maas. Gromov-Hausdorff convergence of discrete transportation metrics. SIAM J. Math. Anal., 45(2), 879–899, 2013.
  22. Homogenisation of one-dimensional discrete optimal transport. J. Math. Pures Appl. (9), 139, 204–234, 2020.
  23. Homogenisation of dynamical optimal transport on periodic graphs. Calc. Var. Partial Differential Equations, 62(5), Paper No. 143, 75, 2023.
  24. Scaling limits of discrete optimal transport. SIAM J. Math. Anal., 52(3), 2759–2802, 2020.
  25. Stochastic homogenisation of transport problems on stationary graphs. In preparation, 2023+.
  26. A. Hraivoronska and O. Tse. Diffusive limit of random walks on tessellations via generalized gradient flows. SIAM J. Math. Anal., 55(4), 2948–2995, 2023.
  27. Variational convergence of the scharfetter-gummel scheme to the aggregation-diffusion equation and vanishing diffusion limit. arXiv preprint arXiv:2306.02226, 2023.
  28. J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3), 90–95, 2007.
  29. The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal., 29(1), 1–17, 1998.
  30. J. Lott and C. Villani. Weak curvature conditions and functional inequalities. Journal of Functional Analysis, 245(1), 311–333, 2007.
  31. J. Lott and C. Villani. Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2), 169(3), 903–991, 2009.
  32. J. Maas. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal., 261(8), 2250–2292, 2011.
  33. A. Mielke. A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity, 24(4), 1329–1346, 2011.
  34. A. Mielke. Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differential Equations, 48(1-2), 1–31, 2013.
  35. F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. Journal of Functional Analysis, 173(2), 361–400, 2000.
  36. K.-T. Sturm. On the geometry of metric measure spaces. I. Acta Math., 196(1), 65–131, 2006.
  37. K.-T. Sturm. On the geometry of metric measure spaces. II. Acta Math., 196(1), 133–177, 2006.

Summary

We haven't generated a summary for this paper yet.