Ordinals and recursively defined functions on the reals (2311.17210v3)
Abstract: Given a function $f:\mathbb R\to\mathbb R$, call a decreasing sequence $x_1>x_2>x_3>\cdots$ $f$-bad if $f(x_1)>f(x_2)>f(x_3)>\cdots$, and call the function $f$ "ordinal decreasing" if there exist no infinite $f$-bad sequences. We prove the following result, which generalizes results of Erickson et al. (2022) and Bufetov et al. (2024): Given ordinal decreasing functions $f,g_1,\ldots,g_k,s$ that are everywhere larger than $0$, define the recursive algorithm "$M(x)$: if $x<0$ return $f(x)$, else return $g_1(-M(x-g_2(-M(x-\cdots-g_k(-M(x-s(x)))\cdots))))$". Then $M(x)$ halts and is ordinal decreasing for all $x \in \mathbb{R}$. More specifically, given an ordinal decreasing function $f$, denote by $o(f)$ the ordinal height of the root of the tree of $f$-bad sequences. Then we prove that, for $k\ge 2$, the function $M(x)$ defined by the above algorithm satisfies $o(M)\le\varphi_{k-1}(\gamma+o(s)+1)$, where $\gamma$ is the smallest ordinal such that $\max{{o(s),o(f),o(g_1), \ldots, o(g_k)}}<\varphi_{k-1}(\gamma)$.
- Harry J. Altman. Intermediate arithmetic operations on ordinal numbers. Mathematical Logic Quarterly, 63(3-4):228–242, 2017.
- Program termination and well partial orderings. ACM Trans. Comput. Logic, 9(3), 2008.
- Generalized fusible numbers and their ordinals. Annals of Pure and Applied Logic, 175(1, Part A), 2024.
- Pete L. Clark. The instructor’s guide to real induction, 2012. arXiv e-prints, math.HO, 1208.0973.
- Dick H. J. de Jongh and Rohit Parikh. Well-partial orderings and hierarchies. Indagationes Mathematicae, 39:195–206, 1977.
- Jeff Erickson. Fusible numbers. https://www.mathpuzzle.com/fusible.pdf.
- Fusible numbers and Peano Arithmetic. Logical Methods in Computer Science, 18(3), 2022.
- F. P. Ramsey. On a problem of formal logic. Proc. Lond. Math. Soc., S2–30:264–286, 1930.
- Proof-theoretic investigations on Kruskal’s theorem. Annals of Pure and Applied Logic, 60(1):49–88, 1993.
- Junyan Xu. Survey on fusible numbers, 2012. arXiv e-prints, math.CO, 1202.5614.